完整後設資料紀錄
DC 欄位語言
dc.contributor.author王家屏en_US
dc.contributor.authorWang, Ja-Pingen_US
dc.contributor.author鄧清政en_US
dc.contributor.authorChing-Cheng Tengen_US
dc.date.accessioned2014-12-12T02:15:01Z-
dc.date.available2014-12-12T02:15:01Z-
dc.date.issued1995en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT840327049en_US
dc.identifier.urihttp://hdl.handle.net/11536/60307-
dc.description.abstract在本論文中,我們研究如何將模糊神經網路用在適應調節控制上.我們提出 一種適應控制的方法;在此方法中,我們設計一個模糊類神經控制器以及一 個鑑別器.我們以輸入輸出線性化的技巧討論在閉迴路中的模糊類神經控 制器的性能,並且用李亞普諾夫定理分析系統的收斂性.至於模糊類神經鑑 別器則用來提供動態系統的靈敏度來調整模糊類神經的參數.一些模擬結 果顯示模糊類神經在適應調節控制的應用有很好的效果. In this thesis, we investigate the possible application of fuzzy neural network to adaptive regulation control. We propose a control scheme including FNNC (fuzzy neural network controller) and FNNI (fuzzy neural network identifier) to adaptive regulation control. FNNC is discussed using input- ouput linearization on technique and is analyzed using Lyapunov theorem. FNNI is used for the backpropagation of errors through the plant to the controller.In particular, dynamic plant sensitivity is provided by the FNNI to adjust theparameters of FNNC. Several simulation results shows the merit of applying FNNto the adaptive control.zh_TW
dc.language.isozh_TWen_US
dc.subject模糊zh_TW
dc.subject神經網路zh_TW
dc.subject適應控制zh_TW
dc.subjectfuzzyen_US
dc.subjectneuralen_US
dc.subjectadaptive controlen_US
dc.title以模糊神經網路為基礎的適應控制zh_TW
dc.titleAdaptive Control Based On Fuzzy Neural Networken_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
顯示於類別:畢業論文