Full metadata record
DC FieldValueLanguage
dc.contributor.author趙春棠en_US
dc.contributor.authorChun-Tang Chaoen_US
dc.contributor.author鄧清政en_US
dc.contributor.authorChing-Cheng Tengen_US
dc.date.accessioned2014-12-12T02:15:04Z-
dc.date.available2014-12-12T02:15:04Z-
dc.date.issued1995en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT840327078en_US
dc.identifier.urihttp://hdl.handle.net/11536/60340-
dc.description.abstract本文對於模糊控制以及模糊類神經系統,做了深入的研究與探討。 在模糊控制方面,我們首先推導模糊控制器與傳統PD (或PI)控制 器之等效性;接著,我們還提出了一個無穩態誤差響應的自調式 PD模糊控制器 另一方面,我們發展了兩個模糊類神經系統: NFNN 及 FNNS,用以簡化模糊類神經網路的複雜度。此外,我們還 發展出一個結合此二系統特點的合成方法,它能在不需事前的專 家知識情況下,有彈性地鑑別並簡化模糊類神經網路的架構。最 後,我們利用模糊類神經網路建立了一個離散推廣型卡爾曼濾波 器用以估測非線性系統的狀態。 In this thesis we do the work of research about the fuzzy control and fuzzy-neural systems. In fuzzy control, we first propose a fuzzy logic controller which is equivalent to the classical PD (or PI) controller. A PD-like self-tuning fuzzy controller is then presented that yields zero steady-state responses. On the other hand, two fuzzy-neural systems, the NFNN and FNNS, are developed for reducing the complexity of a fuzzy neural network. Also, a synthesis method combining the advantages of NFNN and FNNS is explored to flexibly identify a fuzzy-neural-network structure without prior expert knowledge. Finally, we construct a discrete extended Kalman filter by using fuzzy neural networks.zh_TW
dc.language.isoen_USen_US
dc.subject模糊控制,模糊類神經網路,卡爾曼濾波器,PD型控制器zh_TW
dc.subjectFuzzy control, Fuzzy neural network, Kalman filter, PD controlleren_US
dc.title模糊控制以及模糊類神經網路在推廣型卡爾曼濾波器之應用zh_TW
dc.titleFuzzy Control and the Application of Fuzzy Neural System for Extended Kalman Filteren_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
Appears in Collections:Thesis