Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 趙春棠 | en_US |
dc.contributor.author | Chun-Tang Chao | en_US |
dc.contributor.author | 鄧清政 | en_US |
dc.contributor.author | Ching-Cheng Teng | en_US |
dc.date.accessioned | 2014-12-12T02:15:04Z | - |
dc.date.available | 2014-12-12T02:15:04Z | - |
dc.date.issued | 1995 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT840327078 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/60340 | - |
dc.description.abstract | 本文對於模糊控制以及模糊類神經系統,做了深入的研究與探討。 在模糊控制方面,我們首先推導模糊控制器與傳統PD (或PI)控制 器之等效性;接著,我們還提出了一個無穩態誤差響應的自調式 PD模糊控制器 另一方面,我們發展了兩個模糊類神經系統: NFNN 及 FNNS,用以簡化模糊類神經網路的複雜度。此外,我們還 發展出一個結合此二系統特點的合成方法,它能在不需事前的專 家知識情況下,有彈性地鑑別並簡化模糊類神經網路的架構。最 後,我們利用模糊類神經網路建立了一個離散推廣型卡爾曼濾波 器用以估測非線性系統的狀態。 In this thesis we do the work of research about the fuzzy control and fuzzy-neural systems. In fuzzy control, we first propose a fuzzy logic controller which is equivalent to the classical PD (or PI) controller. A PD-like self-tuning fuzzy controller is then presented that yields zero steady-state responses. On the other hand, two fuzzy-neural systems, the NFNN and FNNS, are developed for reducing the complexity of a fuzzy neural network. Also, a synthesis method combining the advantages of NFNN and FNNS is explored to flexibly identify a fuzzy-neural-network structure without prior expert knowledge. Finally, we construct a discrete extended Kalman filter by using fuzzy neural networks. | zh_TW |
dc.language.iso | en_US | en_US |
dc.subject | 模糊控制,模糊類神經網路,卡爾曼濾波器,PD型控制器 | zh_TW |
dc.subject | Fuzzy control, Fuzzy neural network, Kalman filter, PD controller | en_US |
dc.title | 模糊控制以及模糊類神經網路在推廣型卡爾曼濾波器之應用 | zh_TW |
dc.title | Fuzzy Control and the Application of Fuzzy Neural System for Extended Kalman Filter | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
Appears in Collections: | Thesis |