完整後設資料紀錄
DC 欄位語言
dc.contributor.author丁德宏en_US
dc.contributor.authorTing, Der-Hongen_US
dc.contributor.author楊啟瑞en_US
dc.contributor.authorMaria C. Yuangen_US
dc.date.accessioned2014-12-12T02:15:08Z-
dc.date.available2014-12-12T02:15:08Z-
dc.date.issued1995en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT840392063en_US
dc.identifier.urihttp://hdl.handle.net/11536/60409-
dc.description.abstractATM 網路必須經由多點路由選擇演算法來提供有效的多點通訊服務,例如 :視訊會議。我們先前曾提出一個以分割 (partition) 為基礎的最佳化 多點路由選擇演算法,確保在 ATM 網路上產生的負載或封包 (cell) 數 為最小。但由於高計算複雜度的限制,該演算法並無法有效應用於實際的 ATM 網路。本論文提出一結合類神經網路與分割技術的近似最佳化多點路 由選擇演算法。此演算法首先將網路多點路由選擇問題分割成子問題的集 合,並應用類神經網路預估每個子問題的最低負載。所有藉由分割產生的 子問題以預估之最低負載排序並加以處理。實驗數據顯示,藉由類神經網 路的負載預估,僅須分割有限數目的子問題就能獲得可接受甚至是最佳的 多點路由。此外,實驗數據亦顯示本演算法在子問題數目及模擬計算時間 上均優於我們之前所提出的最佳多點路由選擇演算法。 ATM networks are expected to efficiently provide multicast communication services(e.g., video conferencing) by means of a feasible multicast routing algorithm. Ourearlier research has presented an optimal partition-based multicast routing algorithmwhich guarantees a minimum number of cells to be generated in an ATM network.The limitation of the algorithm is the unviability for realistic ATM networks due to highcomputation complexity. In this paper, we propose a near- optimal Minimum-LoadMulticast Routing (MLMR) algorithm by means of the combination of the neuralnetwork and partition methods. The algorithm first partitions the search space of theproblem into a set of subproblems and neural network is applied to predict theminimum load of each subproblem generated. All subproblems are then processedby means of partition in increasing order of their expected minimum load.Experimental results show that by introducing the neural network technique, only limited number of subproblems are required to obtain an acceptable,even optimal, solution. Compared to the regular partition-based optimal minimum-loadmulticast routing algorithm, the MLMR algorithm exhibits great superiority both in thenumber of subproblems and the computation time.zh_TW
dc.language.isozh_TWen_US
dc.subject非同步傳輸模式zh_TW
dc.subject類神經網路zh_TW
dc.subject多點通訊路由zh_TW
dc.subject延遲最佳化zh_TW
dc.subject負載最佳化zh_TW
dc.subjectAsynchronous Transfer Modeen_US
dc.subjectNeural Networken_US
dc.subjectMulticast Routingen_US
dc.subjectDelay Optimizationen_US
dc.subjectLoad Optimizationen_US
dc.titleATM 網路中多點通訊路由之近似最佳化選擇zh_TW
dc.titleNear-Optimal Multicast Routing in ATM Networksen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文