標題: | 具有個人調適功能之手寫中文辨識系統 A Personal Adaptive Module for Handwritten Chinese Charactes Recognition Syatem |
作者: | 莊舜清 Chuang, Soon-Ching 傅心家 Fu Hsin-Chia 資訊科學與工程研究所 |
關鍵字: | 調適;離線;手寫;事前資訊;辨識;adaptive;off-line;hardwritten;prior information;recognition |
公開日期: | 1995 |
摘要: | This thesis presents an application of statistics theory on off-line adaptivemodule for handwritten Chinese characters recognition. The proposed methodconsists of three components:(1).prior information,(2).feature selection,(3). adaptive module recognition. In order to evaluate the proposed recognition system,we choose 5401 fre-quently used Chinese characters as our domain. The database of each testingand training sample character for the original 5401 classifier was created bythe Computer and Communication Laboratory of Industrial Technology ResearchInstitute. And we select the most 300 frequently used Chinese characterswhich were written by five members of our lab for ten times as the testingand training for the adaptive module. Because the samples for the adaptivemodule were not sepcified,our recognition system could reach a high generalityand user-independence. Experimental results show that, the method improvesrecognition rate from 44.09% to 90.03%. 本論文的目的是應用統計理論於個人手寫中文字之調適。離線手寫 中 文字辨識多年來一直是文字辨識的重要問題,其困難的原因是由於不 同的 使用者之間字跡變異度很大,以致難以只靠資料庫的統計特徵而達 到滿意 的正確分類。本研究事先利用資料庫所提供之〝事前資訊〞,再 配合每個 使用者個別的手寫字跡特性,來建構其個人專屬之手寫中文字 調適模組, 以達成提昇辨識率的目的。本個人手寫調適模組包括三個主 要的部份,分 別是(1)個人手寫字集事前資訊(prior information)之建 立,(2)特徵擷取 ,(3)以模組化個人調適器完成辨識。本論文所能辨識 的字為教育部所選 定的5401個常用字,並從國小課本選定之六百零五個 常用字中隔字挑出三 百個字,再分別請五位使用者分別撰寫十次,作為 訓練及測試之樣本來進 行實驗。根據所提方法實驗之結果,藉由此個人 手寫調適模組的加入,系 統的整體正確率平均由 44.09% 逐漸提昇至 90.03% 。因測試者不限定某 特定個別使用者,因此所建立之系統具有 廣泛性及一般性。 |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT840392071 http://hdl.handle.net/11536/60418 |
顯示於類別: | 畢業論文 |