Full metadata record
DC FieldValueLanguage
dc.contributor.author謝昀澤en_US
dc.contributor.authorHsieh, Yun-Tzeren_US
dc.contributor.author黎漢林en_US
dc.contributor.authorHan-Lin Lien_US
dc.date.accessioned2014-12-12T02:15:22Z-
dc.date.available2014-12-12T02:15:22Z-
dc.date.issued1995en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT840396004en_US
dc.identifier.urihttp://hdl.handle.net/11536/60534-
dc.description.abstract本研究針對考量能力程度變數之能力集﹐觀察決策者之能力學習行為﹐建 構一套含非線性成本函數之能力程度影響關係﹐形成能力集最佳擴展分析 模式﹐並配合模式表示法及線性轉換方法﹐以解決決策者做能力集擴展時 之學習時間分派問題。 傳統之能力集擴展模式﹐大多假設個別能力只有取得與否的狀態﹐而本研 究加入了能力程度之變數﹐使模式更切合實際。與目前已考量能力程度之 能力集擴展模式相較﹐本研究之模式在能力程度取得的因素中﹐同時合併 考慮了學習資源與相關能力對特定能力程度的影響﹐並在模式中可包含各 種非線性之學習成本曲線。在解題方法上﹐本研究提出了以絕對值形式來 表示分段線性函數之方式﹐並配合各種線性轉換技巧﹐可將分析模式線性 化﹐並可減少零壹變數之數量﹐提高解題之效率。 This paper proposes an optimal expansion model of competence set with nonlinear cost functions, which can consider the level of competence and observe thedecision maker's behavior. This model can deal with the problem of assignmentof learning time when decision makers expand their competence sets using the linearization technique. Using the 0-1 logic to presentthe level of competence, the traditional method addressed the problem of the optimal expansion of competence sets. In contrast, the model and the solving method proposed here enjoys the following advantages: it can consider the factors of learning resources and the effect of related competence sets in acquirement of competence simultaneously, and it can conclude the nonlinear learning curve; it can find the solution by utilizing a expression of absolute and a linearization technique, the process can reduce the number of 0-1 variable andimprove the efficiency of problem solving.zh_TW
dc.language.isozh_TWen_US
dc.subject能力集?610zh_TW
dc.subject非線性成本函數?610zh_TW
dc.subjectCompetence Set?610en_US
dc.subjectNonlinear Cost Functions?610en_US
dc.title非線性成本函數的能力集最佳擴展模式zh_TW
dc.titleOptimal Expansion Model of Competence Set with Nonlinear Cost Functionen_US
dc.typeThesisen_US
dc.contributor.department資訊管理研究所zh_TW
Appears in Collections:Thesis