完整後設資料紀錄
DC 欄位語言
dc.contributor.author余菁蓉en_US
dc.contributor.authorYu, Jing-Rungen_US
dc.contributor.author黎漢林en_US
dc.contributor.authorLi Han-Linen_US
dc.date.accessioned2014-12-12T02:15:24Z-
dc.date.available2014-12-12T02:15:24Z-
dc.date.issued1995en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT840396011en_US
dc.identifier.urihttp://hdl.handle.net/11536/60542-
dc.description.abstract改變點位置偵測在逐段多項式函數是一個重要問題﹐一般均需假設改變點 分配才能找到其位置﹐之後﹐求出迴歸方程。由於這是一個棘手問題﹐所 以通常假設改變點位置為已知﹐如此便可利用最小平方法或spline method。 本論文提出以修正後目標規劃法求解在未知改變點下之連續 逐段多項式﹐首先先 介紹本法逐段多項式表示法、特性;其次﹐藉由其特 性利用零壹變數控制改變點個數與修正後目標規劃法﹐以互動的方式﹐完 成能同時偵測改變點位置、求解迴歸方程﹐進而決定滿意的改變點個數﹔ 修正後目標規劃法的應用在於能提高求解的速度﹔最後﹐以兩個範例說明 本法的使用﹐如何找到改變點、並與Poirier's方法與最小平方法做比較 ﹐以利凸顯其優點。 An essence problem in estimating a piecewise polynomial function is the positions of change-points. Suppose the positions of the change-points are known(fixed constants), the polynomial function can then be estimated straight forward by least squares methods or spline method. This paper proposes a Least Absolute Deviations( LAD, L1-norm ) method to estimate a piecewise polynomial function with unknown change-points. We first express a piecewise polynomial function by a series of absolute terms. Utilizing the properties of this function, a goal programming model is formulated to minimize the estimation errors within a given number of change-points. The model is solved by a modified goal programming technique which is more computational efficiency than conventional goal programing methods. We show two examples in Chapter 4 to describe how the proposed method does.zh_TW
dc.language.isozh_TWen_US
dc.subject改變點zh_TW
dc.subject目標規劃zh_TW
dc.subject逐段式迴歸zh_TW
dc.subject最小絕對值法zh_TW
dc.subjectchange-pointen_US
dc.subjectgoal programmingen_US
dc.subjectpiecewise regressionen_US
dc.subjectleast absolute deviationsen_US
dc.title未知改變點下之連續分段迴歸分析 - 修正後目標規劃法的應用zh_TW
dc.titleEstimation of Continuous Piecewise Regression with Unknown Change-Points by Modified Goal Programming Methoden_US
dc.typeThesisen_US
dc.contributor.department資訊管理研究所zh_TW
顯示於類別:畢業論文