完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 王櫻珍 | en_US |
dc.contributor.author | Wang, Ying-Jen | en_US |
dc.contributor.author | 黎漢林 | en_US |
dc.contributor.author | Han-Lin Li | en_US |
dc.date.accessioned | 2014-12-12T02:15:26Z | - |
dc.date.available | 2014-12-12T02:15:26Z | - |
dc.date.issued | 1995 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT840396023 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/60555 | - |
dc.description.abstract | 本文運用改良式 L1迴歸法來推導大型學習案例中的規則 .案例式學 習法可分為 單階學習法與多階學習法 ,單階式案例學習法 (AQ 法)與多 階式案例學習法 (類神經網路法 )的缺點為不易求得最佳解及不易加入限 制條件 . 本文的目的及在發展出一套新的案例學習法 ,以在合理的計算 時間下求得最佳解 .文中並以動物園裡動物分類為例,進行案例學習規則 的推導 , 並證實多階學習法可較單階學習法求得更佳解. This thesis uses a modified L1 regression method to induce rules from large learning examples. The deficiencies of current learning methods (AQ and Neural Networks ) are : firstly , they can only find local optimum ; secondly , they are not allowed to add constraints. This thesis proposes a new method to deduce optimal rules in reasonable computation time. Ananimal classification instance verifies that the multiple layers learning method is better than the single layer learning method. | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | L1 迴歸法 | zh_TW |
dc.subject | 案例式學習 | zh_TW |
dc.subject | 單階學習法 | zh_TW |
dc.subject | 多階學習法 | zh_TW |
dc.subject | L1 Regression Method | en_US |
dc.subject | Learning By Examples | en_US |
dc.subject | Single Layer Learning Method | en_US |
dc.subject | Multiple Layer Learning Method | en_US |
dc.title | 學習案例集規則之推導--改良式 L1迴歸方法的運用 | zh_TW |
dc.title | Induction of Rules From Learning Examples By A Modified L1 Regression Method | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊管理研究所 | zh_TW |
顯示於類別: | 畢業論文 |