完整後設資料紀錄
DC 欄位語言
dc.contributor.author王櫻珍en_US
dc.contributor.authorWang, Ying-Jenen_US
dc.contributor.author黎漢林en_US
dc.contributor.authorHan-Lin Lien_US
dc.date.accessioned2014-12-12T02:15:26Z-
dc.date.available2014-12-12T02:15:26Z-
dc.date.issued1995en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT840396023en_US
dc.identifier.urihttp://hdl.handle.net/11536/60555-
dc.description.abstract本文運用改良式 L1迴歸法來推導大型學習案例中的規則 .案例式學 習法可分為 單階學習法與多階學習法 ,單階式案例學習法 (AQ 法)與多 階式案例學習法 (類神經網路法 )的缺點為不易求得最佳解及不易加入限 制條件 . 本文的目的及在發展出一套新的案例學習法 ,以在合理的計算 時間下求得最佳解 .文中並以動物園裡動物分類為例,進行案例學習規則 的推導 , 並證實多階學習法可較單階學習法求得更佳解. This thesis uses a modified L1 regression method to induce rules from large learning examples. The deficiencies of current learning methods (AQ and Neural Networks ) are : firstly , they can only find local optimum ; secondly , they are not allowed to add constraints. This thesis proposes a new method to deduce optimal rules in reasonable computation time. Ananimal classification instance verifies that the multiple layers learning method is better than the single layer learning method.zh_TW
dc.language.isozh_TWen_US
dc.subjectL1 迴歸法zh_TW
dc.subject案例式學習zh_TW
dc.subject單階學習法zh_TW
dc.subject多階學習法zh_TW
dc.subjectL1 Regression Methoden_US
dc.subjectLearning By Examplesen_US
dc.subjectSingle Layer Learning Methoden_US
dc.subjectMultiple Layer Learning Methoden_US
dc.title學習案例集規則之推導--改良式 L1迴歸方法的運用zh_TW
dc.titleInduction of Rules From Learning Examples By A Modified L1 Regression Methoden_US
dc.typeThesisen_US
dc.contributor.department資訊管理研究所zh_TW
顯示於類別:畢業論文