完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSheu, Jiuh-Biingen_US
dc.date.accessioned2014-12-08T15:07:44Z-
dc.date.available2014-12-08T15:07:44Z-
dc.date.issued2010-01-01en_US
dc.identifier.issn1366-5545en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.tre.2009.07.005en_US
dc.identifier.urihttp://hdl.handle.net/11536/6074-
dc.description.abstractThis paper presents a dynamic relief-demand management model for emergency logistics operations under imperfect information conditions in large-scale natural disasters. The proposed methodology consists of three steps: (1) data fusion to forecast relief demand in multiple areas, (2) fuzzy clustering to classify affected area into groups, and (3) multicriteria decision making to rank the order of priority of groups. The results of tests accounting for different experimental scenarios indicate that the overall forecast errors are lower than 10% inferring the proposed method's capability of dynamic relief-demand forecasting and allocation with imperfect information to facilitate emergency logistics operations. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectEmergency logistics operationsen_US
dc.subjectRelief-demand managementen_US
dc.subjectMulti-source data fusionen_US
dc.subjectFuzzy clusteringen_US
dc.subjectEntropyen_US
dc.subjectTOPSISen_US
dc.titleDynamic relief-demand management for emergency logistics operations under large-scale disastersen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.tre.2009.07.005en_US
dc.identifier.journalTRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEWen_US
dc.citation.volume46en_US
dc.citation.issue1en_US
dc.citation.spage1en_US
dc.citation.epage17en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000271409100001-
dc.citation.woscount43-
顯示於類別:期刊論文


文件中的檔案:

  1. 000271409100001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。