完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 吳瑞彬 | en_US |
dc.contributor.author | Wu, Rui-Bin | en_US |
dc.contributor.author | 陳信宏 | en_US |
dc.contributor.author | Sin-Horng Chen | en_US |
dc.date.accessioned | 2014-12-12T02:15:43Z | - |
dc.date.available | 2014-12-12T02:15:43Z | - |
dc.date.issued | 1995 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT840435025 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/60776 | - |
dc.description.abstract | 論文中探討不特定語者國語連續音節之辨認,所建立的 1300 音節 辨認器,係由一個 以聲韻母模型為基礎的 411 音節隱藏式馬可夫模型 (Hidden Markov Model, HMM)辨認 器以及一個左相關的 HMM 聲調辨認 器結合而成。 為解決基音節與聲調結合時的同步問題 ,我們將每一個 音節視為由 100 類右相關聲母模型、39 類前後文不相關韻母模型以及 2 9 類右相關聲調模型所組合而成,在辨認時,先將 100 類聲母模型、39 類韻母模型以及 29 類聲調模型分別計算狀態觀測機率後,再經由查表 重組合成 1300 音節的模型,用修 正的一階動態規劃演算法進行辨認。 經電話語音測試,使用 159 人的語料訓練及 36 人 的語料測試,獲得 1300 音節的辨認率為 36.40 %, 而 411 音節的辨認率則 47.14 %。 In this thesis, a new method of continuous Mandarin syllable recognition is studied. The 1431-syllable recognizer is composed of an initial-final based 411-base- syllable recognizer and a tone recognizer. It uses 100 right-final-dependent initial HMM models, 39 context- independent final HMM models and 29 right-tone-dependent tone HMM models. To cope with the synchronization problem of combining base-syllable and tone recognizers, in the recognition process, the observation probabilities of 100-initia l models, 39-final models and 29-tone models are separately calculated first. The scores for 1431 syllables are then calculated by a table lookup process. Last, the recognition process is finished by performing a modified one- stage dynamic programming. Performance of the method was examined by simulation using a telephone speech database of 159 training speakers and 36 testing speakers. Accuracy rates of 36.40 % and 47.14 % were obtained for recognition of 1431 and 411 syllables, respectively. | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 隱藏式馬可夫模型 | zh_TW |
dc.subject | 國語連續音辨認 | zh_TW |
dc.subject | 聲調辨認 | zh_TW |
dc.subject | 大字彙辨認 | zh_TW |
dc.subject | 基頻軌跡 | zh_TW |
dc.subject | 一步驟式辨認器 | zh_TW |
dc.subject | Hidden Markov Model | en_US |
dc.subject | Continuous Mandarin Speech Recognition | en_US |
dc.subject | Tone Recognition | en_US |
dc.subject | Large Vocabulary Recognition | en_US |
dc.subject | Pitch Contour | en_US |
dc.subject | One-stage Recognizer | en_US |
dc.title | 不特定語者國語連續音節辨認 | zh_TW |
dc.title | Speaker Independent Continuous Mandarin Syllable Recognition | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電信工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |