Full metadata record
DC FieldValueLanguage
dc.contributor.author黃靜薇en_US
dc.contributor.authorHuang, Jing-Weien_US
dc.contributor.author彭南夫en_US
dc.contributor.authorPeng, Nan-Fuen_US
dc.date.accessioned2014-12-12T02:16:09Z-
dc.date.available2014-12-12T02:16:09Z-
dc.date.issued1995en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT843337003en_US
dc.identifier.urihttp://hdl.handle.net/11536/61083-
dc.description.abstract本篇論文是將一連續時間的馬可夫群體過程加入災害的影響後,形成災害–馬可夫群體過程,而災害發生次數是根據卜瓦松過程隨機發生的,且假設其發生率為一常數,以第一次災害發生時間為條件,再加上沒有災害時,群體的轉換行為是完全知道,求此群體的滅種時間機率分佈函數,以轉換機率矩陣和災害隨機矩陣來表示,探討災害對群體的滅種時間機率分佈函致之影響,再利用有限連續時間馬可夫鏈來計算群體的滅種時間機率分佈函數,並探討相關變數對有災害的影響與無災害的影響之差異大小為何。zh_TW
dc.description.abstractConsider a general Markov population process under the influence of arbitrary disaster with time dependent power and occurring to a Poisson process wth constant rate. We find that the distribution of extinction time of this process can be obtained tf the transition behavor of the original process without disasters is completely known. Finally use continuous time finite Markov chain to compute some examples.en_US
dc.language.isozh_TWen_US
dc.subject群體zh_TW
dc.subject滅種時間zh_TW
dc.subjectPopulationen_US
dc.subjectExtinction timeen_US
dc.title災害-馬可夫群體過程的滅種時間機率分佈函數zh_TW
dc.titleThe Extinction Time of Population Processes Subject to Disasteren_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis