完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGuo, Chun-Huaen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2014-12-08T15:07:46Z-
dc.date.available2014-12-08T15:07:46Z-
dc.date.issued2010en_US
dc.identifier.issn0895-4798en_US
dc.identifier.urihttp://hdl.handle.net/11536/6111-
dc.identifier.urihttp://dx.doi.org/10.1137/090763196en_US
dc.description.abstractIn studying the vibration of fast trains, we encounter a palindromic quadratic eigen-value problem (QEP) (lambda(2)A(T)+lambda Q+A)z = 0, where A, Q is an element of C(nxn) and Q(T) = Q. Moreover, the matrix Q is block tridiagonal and block Toeplitz, and the matrix A has only one nonzero block in the upper-right corner. So most of the eigenvalues of the QEP are zero or infinity. In a linearization approach, one typically starts with deflating these known eigenvalues for the sake of efficiency. However, this initial deflation process involves the inverses of two potentially ill-conditioned matrices. As a result, large error might be introduced into the data for the reduced problem. In this paper we propose using the solvent approach directly on the original QEP, without any deflation process. We apply a structure-preserving doubling algorithm to compute the stabilizing solution of the matrix equation X + A(T)X(-1)A = Q, whose existence is guaranteed by a result on the Wiener-Hopf factorization of rational matrix functions associated with semi-infinite block Toeplitz matrices and a generalization of Bendixson's theorem to bounded linear operators on Hilbert spaces. The doubling algorithm is shown to be well defined and quadratically convergent. The complexity of the doubling algorithm is drastically reduced by using the Sherman-Morrison-Woodbury formula and the special structures of the problem. Once the stabilizing solution is obtained, all nonzero finite eigenvalues of the QEP can be found efficiently and with the automatic reciprocal relationship, while the known eigenvalues at zero or infinity remain intact.en_US
dc.language.isoen_USen_US
dc.subjectpalindromic quadratic eigenvalue problemen_US
dc.subjectnonlinear matrix equationen_US
dc.subjectstabilizing solutionen_US
dc.subjectstructure-preservingen_US
dc.subjectdoubling algorithmen_US
dc.titleSOLVING A STRUCTURED QUADRATIC EIGENVALUE PROBLEM BY A STRUCTURE-PRESERVING DOUBLING ALGORITHMen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/090763196en_US
dc.identifier.journalSIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONSen_US
dc.citation.volume31en_US
dc.citation.issue5en_US
dc.citation.spage2784en_US
dc.citation.epage2801en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000285933400027-
dc.citation.woscount5-
顯示於類別:期刊論文


文件中的檔案:

  1. 000285933400027.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。