Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Jen-Hsienen_US
dc.contributor.authorWei, Hung-Yuen_US
dc.contributor.authorHuang, Kuan-Chiehen_US
dc.contributor.authorChen, Cheng-Lunen_US
dc.contributor.authorWang, Rui-Renen_US
dc.contributor.authorChen, Fang-Chungen_US
dc.contributor.authorHo, Kuo-Chuanen_US
dc.contributor.authorChu, Chih-Weien_US
dc.date.accessioned2014-12-08T15:07:47Z-
dc.date.available2014-12-08T15:07:47Z-
dc.date.issued2010-01-01en_US
dc.identifier.issn1754-5692en_US
dc.identifier.urihttp://dx.doi.org/10.1039/b922373hen_US
dc.identifier.urihttp://hdl.handle.net/11536/6121-
dc.description.abstractIn this study, we fabricated inverted polymer solar cells featuring titanium dioxide (TiO(2)) as the electron collection layer and vanadium (V) oxide (V(2)O(5)) as the hole collection layer. TiO(2) films (anatase phase) were prepared by combining electrochemical deposition with high-pressure crystallization. The low temperature process used to obtain the TiO(2) films minimized interdiffusion of Ti and In species between the TiO(2) and ITO films and maintained the conductivity of the indium tin oxide substrate. The inverted device reached a power conversion efficiency of 3.22% and exhibited much better stability under ambient conditions relative to that of the corresponding conventional device.en_US
dc.language.isoen_USen_US
dc.titleUsing a low temperature crystallization process to prepare anatase TiO(2) buffer layers for air-stable inverted polymer solar cellsen_US
dc.typeArticleen_US
dc.identifier.doi10.1039/b922373hen_US
dc.identifier.journalENERGY & ENVIRONMENTAL SCIENCEen_US
dc.citation.volume3en_US
dc.citation.issue5en_US
dc.citation.spage654en_US
dc.citation.epage658en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
Appears in Collections:Articles