完整後設資料紀錄
DC 欄位語言
dc.contributor.author林泰祥en_US
dc.contributor.authorLin, Tay-Shangen_US
dc.contributor.author鄧清政en_US
dc.contributor.authorTeng Ching-Chengen_US
dc.date.accessioned2014-12-12T02:17:07Z-
dc.date.available2014-12-12T02:17:07Z-
dc.date.issued1996en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT850327015en_US
dc.identifier.urihttp://hdl.handle.net/11536/61667-
dc.description.abstract在本論文中,我們採用模糊神經網路去學習一個未知系統的輸出輸入 關係,並求出其積分值.網路中的參數是藉由倒傳遞法則學習出來的.我們 只要對歸屬函數做積分就可達到對未知函數做積分.最後,我們將此法應用 於解決迴旋積分及常係數微分方程之問題上. In this thesis, we propose a method of usung a fuzzy neural network(FNN)system to map and compute the untegrals of an unknown function. The parameters of the FNN are learned by back-propagation algorithm. We only integrate the membership function to achieve the goal of integrating the unknown function.Finally, we apply this proposed method to solve a convolution problem and constant-coefficient differential equation problems.zh_TW
dc.language.isozh_TWen_US
dc.subject未知函數zh_TW
dc.subject積分zh_TW
dc.subject模糊神經zh_TW
dc.subjectunknown functionen_US
dc.subjectintegralen_US
dc.subjectfuzzy neuralen_US
dc.title利用模糊神經網路計算未知函數的積分zh_TW
dc.titleComputing the Integrals Using Fuzzy Neural Networken_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
顯示於類別:畢業論文