Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 陳宏彥 | en_US |
dc.contributor.author | Chen, Hung-Yen | en_US |
dc.contributor.author | 鄧清政 | en_US |
dc.contributor.author | Ching-Cheng Teng | en_US |
dc.date.accessioned | 2014-12-12T02:17:08Z | - |
dc.date.available | 2014-12-12T02:17:08Z | - |
dc.date.issued | 1996 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT850327032 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/61687 | - |
dc.description.abstract | 在本論文中,我們使用遺傳基因法和倒傳遞法來訓練模糊神經網路做函數 的近似.遺傳基因法和倒傳遞法是用來調模糊神經網路的參數.傳統條模糊 神經網路參數的方法(倒傳遞法)有個弱點就是必須依靠初使條件(連線出 始化或非連線出始化).為了解決這問題我們使用遺傳基因法和到傳遞法來 調模糊神經網路的參數. In this thesis, we present a fuzzy neural network system for a function approximation, which is trained by genetic algorithms and back propagation.The genetic algorithms and back propagation are used for tuning the FNN model parameters. The conventional method(back propagation) has a weak point that the structure of FNN model depends on initial conditions(on-line or of-line initialization).In order to solve this problem this paper proposes a tuning method for the FNN model by GA and BP. | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 遺傳基因法 | zh_TW |
dc.subject | 倒傳遞法 | zh_TW |
dc.subject | 模糊神經 | zh_TW |
dc.subject | 函數近似 | zh_TW |
dc.subject | Genetic Algorithms | en_US |
dc.subject | Back Propagation | en_US |
dc.subject | Fuzzy Neural | en_US |
dc.subject | Function Approximation | en_US |
dc.title | 使用遺傳基因法和倒傳遞法來訓練模糊神經網路做函數的近似 | zh_TW |
dc.title | Use of Genetic Algorithms with Back Propagation in Training of Fuzzy Neural Network for a Function Approximation | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
Appears in Collections: | Thesis |