標題: 使用遺傳基因法和倒傳遞法來訓練模糊神經網路做函數的近似
Use of Genetic Algorithms with Back Propagation in Training of Fuzzy Neural Network for a Function Approximation
作者: 陳宏彥
Chen, Hung-Yen
鄧清政
Ching-Cheng Teng
電控工程研究所
關鍵字: 遺傳基因法;倒傳遞法;模糊神經;函數近似;Genetic Algorithms;Back Propagation;Fuzzy Neural;Function Approximation
公開日期: 1996
摘要: 在本論文中,我們使用遺傳基因法和倒傳遞法來訓練模糊神經網路做函數
的近似.遺傳基因法和倒傳遞法是用來調模糊神經網路的參數.傳統條模糊
神經網路參數的方法(倒傳遞法)有個弱點就是必須依靠初使條件(連線出
始化或非連線出始化).為了解決這問題我們使用遺傳基因法和到傳遞法來
調模糊神經網路的參數.
In this thesis, we present a fuzzy neural network system for a
function approximation, which is trained by genetic algorithms
and back propagation.The genetic algorithms and back propagation
are used for tuning the FNN model parameters. The conventional
method(back propagation) has a weak point that the structure of
FNN model depends on initial conditions(on-line or of-line
initialization).In order to solve this problem this paper
proposes a tuning method for the FNN model by GA and BP.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT850327032
http://hdl.handle.net/11536/61687
顯示於類別:畢業論文