標題: 列聯表參數的估計
On the Estimation of Contingency Table Cell Probabilities
作者: 吳宗益
Wu, Tsung-Yi
周幼珍
Jou Yow-Jen
統計學研究所
關鍵字: 初步檢定估計量;收縮估計量;pretest estimator;shrinkage estimator
公開日期: 1996
摘要: 本文的動機是要合理的估計一個資料不完整的二維列聯表中各格(cell)的 機率。 我們 的主要想法來自於~ Stein(1956)~年提出的收縮估計量。 我們先給定一個 $\theta_ 0$,藉由檢定$\theta_0$的合理性,獲 得一個初步檢定估計量,由於 此一初步檢定 估計量的值只決定 於$H_0$的成立與否,與檢定統計量$X^2$值的大小 沒有太大關聯。為 了改善此一缺點,而得到了一個較為平滑的收縮估計量。本文的 主要焦 點是比較最大概 似估計量(maximum likelihood estimator)、初步檢定 估計量(pretest estimator)、收 縮估計量(shrinkage estimator)三者 的漸近分配及三者在虛無假設$H_0$、對立假設$H_1 $及~Pitman~對立假 設$K_n$下的漸近風險。 The goal of this thesis is to estimate the cell probabilities in tw o-way contingency table,with sampling zeroes.~Our main idea comes from Stei n's shrinkage estimator.~We propose two estimators for this problem: (1) a pretest estimator(PTE) for P when some information shows that p is approxim ately θ,(2)shrinkage estimator is a smoother version of PTE .~Asymptotic d istribution under the null hypothesis, a fixed alternativehypothesis and Pitma n-type alternative hypothesis are derived for both estimators. ~Asymptotic risks are also found and compared with that of MLE under different hypothes
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT850337001
http://hdl.handle.net/11536/61727
Appears in Collections:Thesis