標題: 線性迴歸模型及聯立方程式模型之Mallows形式有界迴歸分位向量
Mallows Type Bounded Influence Regression Quantile for Linear Regression Model and Simultaneous Equations Model
作者: 莊弘昌
Chuang, Hung-Chang
陳鄰安
Chen Lin-An
統計學研究所
關鍵字: 影響;迴歸分位向量;influence;regression quantile
公開日期: 1996
摘要: 我們導出線性迴歸模型及聯立方程式模型的Mallows形式有界迴歸 分位向 量之近似分配。我們也做蒙地卡羅(Monte Carlo)模擬,並比 較均方誤差且 驗證出如果獨立變數產生毛差(gross errors)時,則有界 迴歸分位向量將比無界迴歸分位 向量(見Koenker及Bassett(1978))來得 有效率 。 We present asymptotic distributions of the Mallows type bounded-influencereg ression quantile for the linear regression model and also the simultaneousequa tions model. Monte Carlo simulation comparing mean squared errors showsthat th e bounded-influence one is more efficient than the unbounded- influence one(Koe nker and Bassett(1978))when gross errors occur in the independent-variables-s pace.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT850337007
http://hdl.handle.net/11536/61733
顯示於類別:畢業論文