Title: 噪音環境下的漢語語音辨識
Mandarin Speech Recognition in Noisy Environments
Authors: 劉昱辰
Liu, Yu-Chen
劉啟民
Chi-Min Liu
資訊科學與工程研究所
Keywords: 語音辨識;噪音;漢語;Recognition;Noise;Madarin Speech;MLLR;MCELR;PMC
Issue Date: 1996
Abstract: 語音辨識系統的辨識率受到環境噪音很大的影響。在克服噪音影響的方法
中,語音特徵修正和語音模型修正是兩大類方式。語音特徵修正方式嘗試
將噪音語音修正成乾淨語音,而語音模型修正則嘗試將乾淨語音模型修正
為噪音語音模型。本論文比較這兩大類方式中的幾種方法。在語音特徵修
正方式中我們討論頻譜消去法和線性特徵轉換法。在語音模型修正方式中
我們研究最小平方差模型平均值修正法,最大機率線性回歸法,最小分類
錯誤線性回歸法,投射法和對等模型合併法。在本論文我們實驗這幾種方
法在八種不同噪音環境下的辨識率,並研究彼此的差異性。
The recognition rate of a recognition system degrades seriously
in a noisy environment. In the literature, there have been
various methods directed to improve the recognition rate. Among
them, two approaches deserves special noting: speech feature
compensation and model compensation. Speech feature
compensation tries to provide compensation method for the speech
features while model compensation provides the suitable
modification on the model parameters. The main purpose of this
thesis is to compare several speech feature compensation methods
and speech model compensation methods. Among the feature
compensation methods, we consider the spectral subtraction
method and the linear feature mapping methods. Among the model
compensation methods, we consider the model mean adaptation with
least square error, the maximum likelihood linear regression,
the minimum classification error linear regression, projection
and the parallel model combination. This thesis compares the
performance of the seven methods through eight types of noise
environments and shows the dependence of each method with
various parameters.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT850392041
http://hdl.handle.net/11536/61792
Appears in Collections:Thesis