完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 陳怡和 | en_US |
dc.contributor.author | Chen, Peter | en_US |
dc.contributor.author | 陳安斌 | en_US |
dc.contributor.author | An-Pin Chen | en_US |
dc.date.accessioned | 2014-12-12T02:17:21Z | - |
dc.date.available | 2014-12-12T02:17:21Z | - |
dc.date.issued | 1996 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT850396021 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/61852 | - |
dc.description.abstract | 選擇權是財務金融界中最為活躍的金融工具之一。在70年代以前,人 們沒有一種適切的方法來評估選擇權價值。直到1973年,Fisher Black和 Myron Scholes兩位學者導出了Black- Scholes評價模式,提供了一種便 捷的評價方式,選擇權市場也因此而日漸蓬勃。但是這些都是建立在許多 假設下的統計模式,在面臨實際應用上,出現評價模式價格與實際價格不 一的現象。 然而在近年來多人在人工智慧的研究上已發現,類神經網 路具有學習和高速計算之能力,更由於類神經網路之非線性處理和容錯的 能力,使其預測能力相當優異。故本研究將嘗試運用類神經網路所掌握到 的某特定選擇權之定價行為﹐進行價格預測與分析之行為比對。 本研 究針對芝加哥商業交易所之德國馬克外匯選擇權市場進行實證研究,嘗試 利用基因演算法自動演化之類神經網路來架構一新的選擇權評價模式,與 傳統之Black-Scholes評價模式相比較,並評估這兩種方法對市場價格的 誤差程度與解釋能力。研究期間涵蓋1990年至1992年,共計3年。 研 究結果顯示,類神經網路評價模式不論在誤差程度、變動程度或解釋能力 上都優於Black-Scholes評價模式。表示在德國馬克外匯選擇權市場中, 基因演算法自動演化之類神經網路能夠提供一個比Black-Scholes評價模 式更接近市價且更穩定的選擇權價格之評價模式。 Options is one of the most active financial tools of the financial management fields. However, there is not a properly evaluation method for options prices. Until 1973, Fisher Black and Myron Scholes derive the Black-Scholes pricing models and provide an adequate evaluation method for the options. The options markets therefore develop more and more rapid. But, their model was established under many assumption and deduce the difference between the practical price and theory price. In these years, many researches in AI areas found that Neural Networks pertain excellent learning and computing capabilities. Furthermore, the nonlinear process and fault-tolerance characteristic make the Neural Network method contain excellent forecast capabilities. This research applies the Neural Network on the pricing of specific options and then compares the result with the traditional method. Here, Deutsche mark options traded in CME are chosen as the foreign currency options contracts. The te The result displays whether in error degrees, variant degrees and interpret capability, the Neural Network method is better than the Black-Scholes pricing model. Meanwhile, in Deutsch mark currency options market, a new pricing model using the Neural Network method is a better and more stable than the traditional Black-Scholes pricing model. | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 外匯選擇權 | zh_TW |
dc.subject | 實證研究 | zh_TW |
dc.subject | Black-Scholes評價模式 | zh_TW |
dc.subject | 基因演算法 | zh_TW |
dc.subject | 類神經網路 | zh_TW |
dc.subject | Currency Option | en_US |
dc.subject | Empirical Study | en_US |
dc.subject | Black-Scholes Pricing Model | en_US |
dc.subject | Genetic Algorithm | en_US |
dc.subject | Neural Network | en_US |
dc.title | 運用類神經網路在外匯選擇權評價模式之實證研究 | zh_TW |
dc.title | An Empirical Study of the Foreign Currency Options Pricing Model by Using Artificial Neural Networks | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊管理研究所 | zh_TW |
顯示於類別: | 畢業論文 |