完整後設資料紀錄
DC 欄位語言
dc.contributor.author蕭亦隆en_US
dc.contributor.authorHsiao, I-Longen_US
dc.contributor.author白明憲en_US
dc.contributor.authorBai, MIng-Sianen_US
dc.date.accessioned2014-12-12T02:18:09Z-
dc.date.available2014-12-12T02:18:09Z-
dc.date.issued1996en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT853489024en_US
dc.identifier.urihttp://hdl.handle.net/11536/62372-
dc.description.abstract本研究探討轉動機械之線上故障診斷(FDI)技術。整個故障診斷 系統包括兩個部份,分別是產生特徵值及故障推論,產生特徽值部份 有以信號為基礎的方法及以模型為基礎的方法-連續時域轉子模型及 離散時域轉子模型,而推論部份則利用類神經模糊推論綱路達成。以 信號為基礎的方法中,側向及軸向振動信號都需量測用來計算信號的 特徵值,如平均值、標準差、峰值及各轉速倍頻值。以模型為基礎的 方法中,僅需要量測側向振動信號用來辦識系統模型參數並加以計算 系統的特徵值。整個FDI系統用數位信號處理器(DSP)實現。在實驗方 面,我們選用轉子測試台及離心風扇顯示機械預防保養的重要性。zh_TW
dc.description.abstractOn-line fault detection and isolation (FDI) techniques are proposed for the diagnosis of rotating machinery. The architecture of the systems mainly comprises of feature generation and fault inference. A signal-based method and two model-based methods are used for generating the features required by the subsequent neural fuzzy inference. In the signal-based approach, both lateral and axial vibration data are used for calculating signal features such as the average, the standard deviation, the maximum, and the harmonic multiples. In the model-based approaches, only lateral vibration data are used for calculating the system features. Both the continuous-time and the discrete-time parameter estimation algorithms are employed to generate the features. A neural fuzzy network is exploited for intelligent inference of faults based on the extracted features. The proposed FDI systems are implemented on the platform of a digital signal processor (DSP). Experiments carried out for a rotor kit and a centrifugal fan indicate the potential of the proposed techniques in predictive maintenance.en_US
dc.language.isozh_TWen_US
dc.subject轉動機械zh_TW
dc.subject監測診斷系統zh_TW
dc.title轉動機械之DSP線上故障監測診斷系統研發zh_TW
dc.titleDSP Implementation of an On-Line Fault Diagnosis System for Rotating Machinery via Signal-based and Model-based Intelligent Inferenceen_US
dc.typeThesisen_US
dc.contributor.department機械工程學系zh_TW
顯示於類別:畢業論文