完整後設資料紀錄
DC 欄位語言
dc.contributor.author劉方旗en_US
dc.contributor.authorLiu, Fang-Chyien_US
dc.contributor.author王晉元, 陳慧芬en_US
dc.contributor.authorJin-Yuan Wang, Hui-Fen Chenen_US
dc.date.accessioned2014-12-12T02:18:29Z-
dc.date.available2014-12-12T02:18:29Z-
dc.date.issued1997en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT860118038en_US
dc.identifier.urihttp://hdl.handle.net/11536/62636-
dc.description.abstract本研究探討有關市區公車排班以及即時機動調度兩個課題,在市區公車 方面,在車隊大小與營運策略以及需求不變的情況下,針對市區內公車之 排班問題,即在一起迄點相同之公車路線,求解全時段單一班距及多時班 之最佳時刻表。在行車隨機系統中車輛容量固定、旅客在等候線等候時有 時間有上限(Reneging)、旅客到達過程服從非均勻波以松過程、旅客下車 服從二項式分配、公車站間旅行時間服從韋伯分配以及旅客上下車時間為 一常數。本研究將目標函數定義為客運公司之利潤,即收入減成本,其中 收入為票價收入,成本為營運成本加上乘客等候成本。模式分為兩種:單 一班距及多班距。針對單一班距,本論文以隨機尋根問題 (Stochastic Root Finding Problem; SRFP) 之相關求解方法(Bounding Retrospective algorithm; Bounding RA) 為基礎並略做修正, 使其應 用於求解排班問題之最佳班距。在多班距最佳班距求解上,則是在各時段 內利用單一班距所發展之隨機最佳化方法求解最佳發車班距。在發展排班 問題之最佳班次之演算法上,根據本研究對目標函數之特性探討發現目標 函數為一不連續的函數,而其不連續點發生在發車頻率變動之時,因此本 研究先找出最佳發車頻率,然後在最佳發車頻率中找最佳發車班距。以新 竹客運之一路線的試調資料為依據,對本研究所發展之隨機最佳化方法做 測試,結果發現在旅客到達過程為均勻時,本研究發展之方法能保證找到 最佳班距,然在旅客到達過程為非均勻以及等候成本過大時,演算法對起 始解敏感,然在給定適當之起始解,皆能找到最佳發車班距。班表規劃出 來之後,在實際派車調度時常發生塞車或突發狀況導致即定之班表無法按 時發車,因此針對實際派車時之突發狀況,本研究發展一公車即時機動調 度系統,系統中主要是藉由GPS衛星定位訊號獲知目前車輛所在位置,並 根據即時道路行駛速度計算出車輛回站時間,當發現車輛無法在預定的時 間回來執行下一個班次時,即啟動機動調度模式,產生調度方案供調度者 參考。在機動調度模式,主要處理當站內皆無任何預備車可用時,機動調 度其它路線之車輛來支援發生擾動的班次。在模式中根據使用者給定之系 統回復時間定義出機動調度路網,根據此一路網,我們將機動調度問題轉 換成一集合分割的問題並發展一以Column generation為基礎的最佳化方 法來產生可行之調度方案。在調度方案的產生上,本研究允許班表延誤的 情形,因此增加延誤節點至機動調度路網之中。針對此一路網,本研究利 用各節點之成本/對偶值、時間距以及延誤成本定義出各節點間之成本後 求解最短路徑,所得之最短路徑即為一可行之調度方式。以實際班表模擬 測試發現本研究所發展之機動調度模式能迅速地產生最佳調度方案,而與 人工調度的情形,本研究所發展之機動調度模式在非尖峰時段能增加80% 的營運效率,在尖峰時段中則是改善了17%。 This thesis is study on urban bus scheduling problem and real time reschedulin-g problem. On urban bus scheduling problem, fixed fleet size and captive dema-nd are considered. Finding optimal single headway model and multiple headway model are discussed in this thesis. In stochastic bus system, passenger rene-ging, non-homogeneus arrvial process , weibull travel time and constant passen-ger upload/depart time are considered.The object function is define as profit of bus company. It equals ticket revenue minus operating cost and passengers t-otal waiting cost. Single headway model and multiple headway mathematics model are proposed. Finding optimal headway is a stochastic optimization problem. F-or single headway model, the algorithm of stochastic optimization base on boun-ding RA.。Same algorithm is also applied to multiple headway model in each tim- e interval..According to object function is not discontinuous and disconnected point is occurred on frequency changed. Two stage optimization is proposed. I-n the first stage, optimal frequency is found. In the second stage, optimal he-adway is found in optimal frequency.Empirical results show that modified bound-ing RA can find optimal headway in homogeneous arrival process. In non-homogen-eous arrival process and higher fare/ waiting cost ratio, algorithm is sensitiv-e with initial solution.Although schedule is setuped, traffic conjection and u- nexpected situation that cause journey can not be dispatched on given time are often happened. For these situation, real time bus dispatching and rescheduli-ng system are developed in this thesis. In system, real time bus location can be achieved by GPS signal and expected return time of bus is calculated by rea-l time travel speed of each road. When perturbation journey occurred, system w-ill active bus rescheduling module automatically and provides optimal dispatch-ing alternatives. Rescheduling module is deal with the situation that there is no reserved bus in bus station. It will dispatch bus belonged to other route t-o run perturbation journey. In module, rescheduling network model is constru-cted by system recovery time given by dispatcher. Based on the network, SPP(Se-t Partition Problem) is formulated. For the SPP, a column generation approach is proposed to generate available duties. Delay alternative is considered in ge-nerating available duties, thus delay nodes of each journey are appended to re-scheduling network. For the argumentation network, node-to-node cost matrix is calculated. Arc cost is define as sum of node cost/dual price, time distance and delay cost. After cost matrix is constructed, algorithm find the shortest path for given origin and destination. Each path is an available duty.Empiric-al result show that the column generation algorithm can generate optimal resch-eduling alternative efficiently. Comparing to manual dispatching, rescheduling module can improve 80% bus usage rate in un-peak period, 17% in peak period.zh_TW
dc.language.isozh_TWen_US
dc.subject公車排班zh_TW
dc.subject模擬zh_TW
dc.subject隨機最佳化zh_TW
dc.subject機動調度zh_TW
dc.subject先進公共運輸系統zh_TW
dc.subject任務產生zh_TW
dc.subjectSchedulingen_US
dc.subjectSimulationen_US
dc.subjectStochastic Optimizationen_US
dc.subjectReschedulingen_US
dc.subjectColumn generationen_US
dc.subjectGPSen_US
dc.title市區公車排班與即時機動調度之研究-以新竹客運為例zh_TW
dc.titleThe Study on urban Bus Scheduling and Real Time Rescheduling - A Case Study of hsinchu Transportation Companyen_US
dc.typeThesisen_US
dc.contributor.department運輸與物流管理學系zh_TW
顯示於類別:畢業論文