Full metadata record
DC FieldValueLanguage
dc.contributor.author許碩修en_US
dc.contributor.authorHsu, Shou-Hsiuen_US
dc.contributor.author李昭勝, 洪慧念en_US
dc.contributor.authorJack C. Lee, Hui-Nien Hungen_US
dc.date.accessioned2014-12-12T02:18:33Z-
dc.date.available2014-12-12T02:18:33Z-
dc.date.issued1997en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT860338008en_US
dc.identifier.urihttp://hdl.handle.net/11536/62703-
dc.description.abstract在這篇論文裡, 我們透過最大概似函數的漸近誤差, 改進Akaike資訊 準則, 其收斂速度為o(1/n)。最重要地, 我們應用所提出之Akaike資訊準 則的有限修正到因子分析模型。 In this paper, we improve the Akaike's information criterionby considering the asymptotic bias of the maximum likelihood with the rateof convergence o(1/n). In particular, we apply the proposed finitecorrection of Akaike's information criterion to factor analysis models.zh_TW
dc.language.isozh_TWen_US
dc.subjectAkaike資訊準則zh_TW
dc.subject修正Akaike資訊準則zh_TW
dc.subjectAkaike Information Criterionen_US
dc.subjectCorrected Akaike Information Criterionen_US
dc.title有關Akaike資訊準則及其在因子分析模型的應用zh_TW
dc.titleOn Akaike's Information Criterion with Special Reference to Factor Analysis Modelsen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis