完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 黃正仁 | en_US |
dc.contributor.author | Hwang, Jeng-Ren | en_US |
dc.contributor.author | 陳錫明 | en_US |
dc.contributor.author | Dr. Shyi-Ming Chen | en_US |
dc.date.accessioned | 2014-12-12T02:18:46Z | - |
dc.date.available | 2014-12-12T02:18:46Z | - |
dc.date.issued | 1997 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT860394045 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/62874 | - |
dc.description.abstract | 預測活動對於人類的生活而言是相當重要的,例如天氣預測,地震預測 等。由於傳統的預測方法不能處理歷史資料為語意值的預測問題,利用乏 晰時間系列理論可以來彌補傳統方法之不足。在本論文中,我們提出了兩 個乏晰時間系列模式來處理預測問題,它們分別為非時變一個因素的乏晰 時間系列模式和非時變兩個因素的乏晰時間系列模式。根據所提出的非時 變一個因素的乏晰時間系列模式,我們提出兩個非時變一個因素的乏晰時 間系列演算法(演算法-A和演算法-A*)以預測美國阿拉巴馬州立大學的學 生註冊人數。根據所提出的非時變兩個因素的乏晰時間系列模式,我們提 出兩個非時變兩個因素的乏晰時間系列演算法(演算法-B和演算法-B*)以 預測氣溫。在本論文中所提的演算法不僅具有計算複雜度低的優點,同時 也能得到很好的預測結果。 Forecasting activities are very important to our life, such as the weather forecasting, the earthquake forecasting, …, etc. The disadvantage of the traditional forecasting methods is that it can not deal with forecasting problems in which the historical data are represented by linguistic values. Using fuzzy time series to deal with the forecasting problems can overcome this drawback. In this thesis, we propose two new fuzzy time series models to deal with forecasting problems, which are the one-factor time-variant fuzzy time series model and the two- factors time-variant fuzzy time series model. Based on the proposed one-factor time-variant fuzzy time series model, we propose two one-factor time-variant fuzzy time series algorithms (i.e Algorithm-A and Algorithm-A*) to forecast the enrollments of the University of Alabama. Based on the proposed two-factors time-variant fuzzy time series model, we propose two two-factors time-variant fuzzy time series algorithms (i.e., Algorithm-B and Algorithm-B*) for temperature prediction. Both of these algorithms have the advantages of low time complexity and can get good forecasting results. | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 乏晰時間系列 | zh_TW |
dc.subject | 預測 | zh_TW |
dc.subject | 時變 | zh_TW |
dc.subject | fuzzy time series | en_US |
dc.subject | forecast | en_US |
dc.subject | time-variant | en_US |
dc.title | 根據乏晰時間系列理論以處理預測問題之新方法 | zh_TW |
dc.title | New Methods for Handling Forecasting Problems Based on Fuzzy Time Series | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊科學與工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |