完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, I-Chenen_US
dc.contributor.authorChang, Wen-Hsingen_US
dc.contributor.authorLo, Yung-Shengen_US
dc.contributor.authorPeng, Jen-Yuen_US
dc.contributor.authorLin, Chan-Yuen_US
dc.date.accessioned2014-12-08T15:08:02Z-
dc.date.available2014-12-08T15:08:02Z-
dc.date.issued2010-01-01en_US
dc.identifier.issn1546-4261en_US
dc.identifier.urihttp://dx.doi.org/10.1002/cav.332en_US
dc.identifier.urihttp://hdl.handle.net/11536/6292-
dc.description.abstractThis paper presents a novel optimization framework for estimating the static or dynamic surfaces with details. The proposed method uses dense depths from a structured-light system or sparse ones from motion capture as the initial positions, and exploits non-Lambertian reflectance models to approximate surface reflectance. Multi-stage shape-from-shading (SFS) is then applied to optimize both shape geometry and reflectance properties. Because this method uses non-Lambertian properties, it can compensate for triangulation reconstruction errors caused by view-dependent reflections. This approach can also estimate detailed undulations on text-tireless regions, and employs spatial-temporal constraints for reliably tracking time-varying surfaces. Experiment results demonstrate that accurate and detailed 3D surfaces can be reconstructed from images acquired by off-the-shelf devices. Copyright (C) 2010 John Wiley & Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectimage-based 3D modelingen_US
dc.subjectshape-from-shadingen_US
dc.subjectnon-Lambertian reflectionen_US
dc.subjectmotion captureen_US
dc.subjectfacial animationen_US
dc.titleImage-based detail reconstruction of non-Lambertian surfacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/cav.332en_US
dc.identifier.journalCOMPUTER ANIMATION AND VIRTUAL WORLDSen_US
dc.citation.volume21en_US
dc.citation.issue1en_US
dc.citation.spage55en_US
dc.citation.epage68en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000274937200005-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000274937200005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。