完整後設資料紀錄
DC 欄位語言
dc.contributor.author邱浩然en_US
dc.contributor.authorChiu, Hao-Janen_US
dc.contributor.author孫春在en_US
dc.contributor.authorChuen-Tsai Sunen_US
dc.date.accessioned2014-12-12T02:18:50Z-
dc.date.available2014-12-12T02:18:50Z-
dc.date.issued1997en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT860394099en_US
dc.identifier.urihttp://hdl.handle.net/11536/62934-
dc.description.abstract模糊神經網路,是結合類神經網路以及模糊推理系統之特長所產生的功能 強大的人工智慧模型。如何成功地建立一個模糊神經網路,一直受到廣泛 的注意與研究。要建立一個模糊神經網路需要兩個步驟:網路架構的建立 以及細部參數的設定。前者意在建立一個大概的網路架構,而後者就是要 去仔細的調整架構內的參數。傳統的建構方法都各自有著缺點,使得系統 的建立一直有著瓶頸存在。為了突破這些現存的瓶頸與問題,在本篇論文 中,我們提出了一個具有演化特色的模型。利用這個模型,可以避免傳統 方法上常遇到的問題,並且將建構的兩個步驟同時完成。而不若傳統方法 中的依序解決。本篇論文中所提出的模型,利用演化式計算的最佳化能力 ,提供了不同於傳統方法的研究方向。 Neuro-fuzzy systems are powerful hybridized systems withinthe domains of arti-ficial neural networks (ANNs) and fuzzy inference systems. Identifying a neur-o-fuzzy system is a relevant issue having received extensive attention. Model-ing a neuro-fuzzy system requires two steps: structure identification and par-ameter identification. The former identifies the rough structure of a system, and the latter fine-tunes detail parameters of the system. Conventional appro-aches to identify a system have their constraints. In order to overcome those limitations, several intelligence systems have been applied in this thesis. Inthis thesis, we propose an evolutionary model that fulfills the two phases id-entifying a system: simultaneoulsy identifying the structure and the paramete-rs. The proposed model facilitates the construction of a neuro-fuzzy system. This model provides an evolutionary approach to modify a neuro-fuzzy system o-ther than conventional ones.zh_TW
dc.language.isozh_TWen_US
dc.subject模糊神經網路zh_TW
dc.subject演化式計算zh_TW
dc.subject遺傳演算法zh_TW
dc.subjectNeuro-Fuzzyen_US
dc.subjectECen_US
dc.subjectGAen_US
dc.title演化式模糊神經網路建構與應用zh_TW
dc.titleEvolutioanry Neuro-Fuzzy Modeling and Applicationsen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文