Full metadata record
DC FieldValueLanguage
dc.contributor.author廖世先en_US
dc.contributor.authorLiao, Shyh-Shianen_US
dc.contributor.author林昇甫en_US
dc.contributor.authorLin Sheng-Fuuen_US
dc.date.accessioned2014-12-12T02:19:12Z-
dc.date.available2014-12-12T02:19:12Z-
dc.date.issued1997en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT860591050en_US
dc.identifier.urihttp://hdl.handle.net/11536/63230-
dc.description.abstract在這篇論文中我們設計並製造完成一組立體影像追蹤系統。 為了預測目
標物的移動以減少追蹤的誤差,我們應用了卡曼濾波器(Kalman filter)與
模糊邏輯(fuzzy logic)來設計不同的估測器,並以實驗來測試這兩種估測
器的性能。實驗的內容是將一塊釘了釘子的板子傾斜某一個角度,並使一
顆球由斜坡頂端沿斜波自由滾下由本系統進行追蹤並記錄誤差。實驗結果
發現當傾斜角度小於30°時由模糊邏輯所構成的估測器有較佳的表現若傾
斜角度大於30°時兩種估測器的性能都急劇劣化。
We design and implement the stereo vision tracking system. In
order to reduce the tracking error, we design two predictors
with Kalman filter and fuzzy logic respectively to predict the
movement of the target. We design an experiment to test the
performance of fuzzy predictor and Kalman predictor. The setup
of experiment device is taking a white flat board with some
nails clinched on the surface, elevating one end of the board
and making the board form a descent. Then put a little ball on
the top of the descent and let the ball roll down the descent
freely. The tracking system will track the ball and record the
tracking error. Fromthe results of the experiment, we know that
when the acclivitous angle is smaller than 30°, the tracking
error of fuzzy predictor is smaller than Kalman predictor. But
when the acclivitous angle is larger than 30°, the performance
of the two predictors will become bad quickly.
zh_TW
dc.language.isozh_TWen_US
dc.subject卡曼濾波器zh_TW
dc.subject模糊邏輯zh_TW
dc.subject追蹤zh_TW
dc.subject立體影像zh_TW
dc.subjectKalman filteren_US
dc.subjectfuzzy logicen_US
dc.subjecttrackingen_US
dc.subjectstereo imageen_US
dc.title立體影像系統用於移動物體追蹤之研究zh_TW
dc.titleA Study of Moving Target Tracking Using A Stereo Vision Systemen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
Appears in Collections:Thesis