Full metadata record
DC FieldValueLanguage
dc.contributor.author傅新彬en_US
dc.contributor.authorFu, Hsin-Pinen_US
dc.contributor.author蘇朝墩en_US
dc.contributor.authorSu, Chao-Tonen_US
dc.date.accessioned2014-12-12T02:19:17Z-
dc.date.available2014-12-12T02:19:17Z-
dc.date.issued1997en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT863031008en_US
dc.identifier.urihttp://hdl.handle.net/11536/63307-
dc.description.abstract機器人已普遍應用於裝配工作,而其裝配時間,深深影響生產成本及產能。因此如何縮短機器人裝配時間,為一個非常重要之課題。影響裝配時間之因素有三項:1. 機器人動作2.裝配順序3.零件位置排列。
機器人裝配動作可分為固定式 (Fixed Pick-and-Place,簡稱FPP) 與動態式(Dynamic Pick-and-Place,簡稱DPP)。過去在DPP研究中,零件槽排列採用隨機(random) 方式或啟發式 (heurstic) 方法,裝配順序之安排則利用TSP (TravelingSalesman Problem) 方法。基本上,TSP方法是適用在固定座標中安排行走最短之距離;但在DPP中,裝配板、零件槽或機器人等在不同移動速度之下,裝配點或零件槽位置間之相對座標隨時在改變,均有可能影響最佳裝配順序與零件位置之排列。換句話說,DPP模式為一動態問題,而TSP方法並未考慮到此點。
本文提出基因演算法、模擬退火法及塔布搜尋法等三個較適合解決動態問題之隨機演算法來對零件排放位置、裝配順序作更佳之安排,使機器人裝配時間更耗。模擬實驗結果顯示本文所提的方法優於傳統方法。
zh_TW
dc.description.abstractThe industrial robot has been applied widely in manufacturing. The robot assembly time is heavily related to the production cost and capacity. Therefore, how to reduce the robot assembly time is a crucial issue. Two types of robot assembly motion have been characterized: (1) fixed robot motion between fixed pick and place (FPP) points and (2) robot motion with dynamic pick and place (DPP) points. Three factors highly influence the robot assembly efficiency: (1) robot motion control, (2) the sequence of placement point, and (3) the magazine assignment.
In the robotics assembly problem, the coordinates of assembly point and magazine are reacted dynamically so that the evaluation function is extremely complicated. To route robotics travel, most investigations have utilized the fixed coordinate of insertion points and magazine of the Traveling Salesman Problems (TSP) method to sequence the insertion points after arbitrarily assigning the magazine. However, robotics travel routing should be based on a relative coordinate so as to obtain a better solution because the robotics, board and magazine are simultaneously moved at different speeds during assembly.
To resolve such a dynamically combinatorial problem, this dissertation presents the Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS) based procedures. These approaches can simultaneously arrange the insertion sequence and assign the magazine slots by the computer and yield a better performance than in the conventional approach. Results presented herein also demonstrate that the larger the number of insertion points and/or part numbers implies a better performance. These approaches are also compared.
en_US
dc.language.isozh_TWen_US
dc.subject機器人裝配zh_TW
dc.subject固定式抓取裝配zh_TW
dc.subject動態式抓取裝配zh_TW
dc.subject裝配順序zh_TW
dc.subject零件配置zh_TW
dc.subject基因演算法zh_TW
dc.subject模擬退火法zh_TW
dc.subject塔布搜尋法zh_TW
dc.subjectrootics assemblyen_US
dc.subjectFPPen_US
dc.subjectDPPen_US
dc.subjectassembly sequenceen_US
dc.subjectmagazine assignmenten_US
dc.subjectgeneric algorithmen_US
dc.subjectsimulated annealingen_US
dc.subjecttabu searchen_US
dc.title應用隨機演算法於動態式機器人裝配之研究zh_TW
dc.titleThe Stochastic Heuristics in Resolving the Dynamic Robotic Assembly Problemen_US
dc.typeThesisen_US
dc.contributor.department工業工程與管理學系zh_TW
Appears in Collections:Thesis