Full metadata record
DC FieldValueLanguage
dc.contributor.author方瑗蔆en_US
dc.contributor.authorFang, Yuan-Lingen_US
dc.contributor.author傅□霖en_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2014-12-12T02:19:42Z-
dc.date.available2014-12-12T02:19:42Z-
dc.date.issued1997en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT863507006en_US
dc.identifier.urihttp://hdl.handle.net/11536/63579-
dc.description.abstract在本論文中,我們使用最少的剩餘和最少的加入去分別描述最大的填塞與最小的覆蓋問題。如此一來,我們可以清楚地看出這兩類問題的關連性,也可以利用他們去建構其他的設計,例如二度相關之群分設計。zh_TW
dc.description.abstractIn this thesis, we study the optimal packing and covering of Kv with quadruples (K4). Mainly, minimum leave and minimum padding are utilized to describe a maximum packing and a minimum covering respectively. Other than the general optimal packing and covering, we also consider the optimal packing and covering in which their leave and padding are restricted to be simple respectively.en_US
dc.language.isoen_USen_US
dc.subject填塞zh_TW
dc.subject四點完全圖zh_TW
dc.title四點完全圖的最佳填塞與覆蓋之研究zh_TW
dc.titleOptimal Packing and Covering of λKv, with Quadruplesen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis