完整後設資料紀錄
DC 欄位語言
dc.contributor.author張慧雲en_US
dc.contributor.authorHuei-yun Changen_US
dc.contributor.author盧鴻興en_US
dc.contributor.authorHenry Horng-Shing Luen_US
dc.date.accessioned2014-12-12T02:20:13Z-
dc.date.available2014-12-12T02:20:13Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870337001en_US
dc.identifier.urihttp://hdl.handle.net/11536/63989-
dc.description.abstract這篇論文利用觀察到的資料來選擇在無參數混合效應模型中的碎型波收縮的參數,方法包括交叉確認法(cross-validation method)與廣義的交叉確認法(generalized cross-validation)兩類方法.經由模擬研究,我們發現,特別是在樣本數較小及誤差程度不知道時,廣義的交叉確認法是較有效的,較可靠的,及較快的方法.zh_TW
dc.description.abstractThis study investigates the data-driven selection method of the threshold parameter in the wavelet shrinkage method for nonparametric mixed-effects models. The cross-validation and generalized cross-validation methods are studied. Through the simulation studies, the generalized cross-validation method turns out to be a efficient, reliable, and fast method in varticular when sample sizes are small and the noise levels are unknown.en_US
dc.language.isoen_USen_US
dc.subject無參數混合效應模型zh_TW
dc.subject碎形波收縮zh_TW
dc.subject無參數迴歸zh_TW
dc.subject最佳線性不偏預測zh_TW
dc.subject交叉確認法zh_TW
dc.subject廣義交叉確認法zh_TW
dc.subjectNonparametric Mixed-effects Modelsen_US
dc.subjectWavelet Shrinkageen_US
dc.subjectNonparametric Regressionen_US
dc.subjectbest linear unbiased prediction(BLUP)en_US
dc.subjectcross-validation methoden_US
dc.subjectgeneralized cross-validation methoden_US
dc.title在無參數混合效應模型中進行由資料驅使的碎形波收縮zh_TW
dc.titleData-Driven Wavlet Shrinkage for Nonparametric Mixed-effects Modelsen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文