完整后设资料纪录
DC 栏位 | 值 | 语言 |
---|---|---|
dc.contributor.author | 李淑芬 | en_US |
dc.contributor.author | Shu-Fen Lee | en_US |
dc.contributor.author | 洪慧念 | en_US |
dc.contributor.author | H. N. Hung | en_US |
dc.date.accessioned | 2014-12-12T02:20:14Z | - |
dc.date.available | 2014-12-12T02:20:14Z | - |
dc.date.issued | 1998 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT870337009 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/63998 | - |
dc.description.abstract | 两倍的对数概似比函数的极限分配为卡方分配是我们所熟知 的定理。但此定理的证明须利用到概似函数的泰勒展开式,且需 要假设最大概似统计量的极限分配为常态分配。 在我们的论文中,只需对数概似比函数的轮廓的结构为扇形 。若Wilks定理成立,则此处的扇形结构为一椭圆。即使概似函 数不甚平滑或最大概似统计量的极限分配不为常态,仍可证得对 数概似比函数的极限分配为加码分配。同时在小样本的情况下, 对数概似比函数的分配仍很接近加码分配。 | zh_TW |
dc.description.abstract | It is well-known that twice a log-likelihood ratio statistic follows asymptotically a chisquare-distribution. The result is usually understood and proved via Taylor's expansions of likelihood functions and by assuming asymptotic normality of maximum likelihood estimators.We contend thatmore fundamental insights can be obtained for the likelihood ratio statistics: the result holds as long as likelihood contour sets are of fan-shape. The classical Wilks theorem corresponds to the situations where the likelihood contour sets are ellipsoid. This provides an insightful geometric understanding and a useful extension of the likelihood ratio theory. As a result, even if the MLEs are not asymptotically normal,the likelihood ratio statistics can still be asymptotically gamma-distributed. Even in finite sample situation, we can also use the gamma type distributions to approximate the true distribution.Our technical arguments are simple and can easily be understood. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 概似比函数 | zh_TW |
dc.subject | log-likelihood ratio statistic | en_US |
dc.title | 观察对数概似比函数在不平滑模型下之行为 | zh_TW |
dc.title | Behavior of Log-likelihood Ratio Statistics in Non-smooth Models | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 统计学研究所 | zh_TW |
显示于类别: | Thesis |