完整后设资料纪录
DC 栏位语言
dc.contributor.author李淑芬en_US
dc.contributor.authorShu-Fen Leeen_US
dc.contributor.author洪慧念en_US
dc.contributor.authorH. N. Hungen_US
dc.date.accessioned2014-12-12T02:20:14Z-
dc.date.available2014-12-12T02:20:14Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870337009en_US
dc.identifier.urihttp://hdl.handle.net/11536/63998-
dc.description.abstract两倍的对数概似比函数的极限分配为卡方分配是我们所熟知
的定理。但此定理的证明须利用到概似函数的泰勒展开式,且需
要假设最大概似统计量的极限分配为常态分配。
在我们的论文中,只需对数概似比函数的轮廓的结构为扇形
。若Wilks定理成立,则此处的扇形结构为一椭圆。即使概似函
数不甚平滑或最大概似统计量的极限分配不为常态,仍可证得对
数概似比函数的极限分配为加码分配。同时在小样本的情况下,
对数概似比函数的分配仍很接近加码分配。
zh_TW
dc.description.abstractIt is well-known that twice a log-likelihood ratio statistic
follows asymptotically a chisquare-distribution. The result
is usually understood and proved via Taylor's expansions
of likelihood functions and by assuming asymptotic normality
of maximum likelihood estimators.We contend thatmore
fundamental insights can be obtained for the likelihood ratio
statistics: the result holds as long as likelihood contour sets
are of fan-shape. The classical Wilks theorem corresponds to
the situations where the likelihood contour sets are ellipsoid.
This provides an insightful geometric understanding and a
useful extension of the likelihood ratio theory. As a result,
even if the MLEs are not asymptotically normal,the likelihood
ratio statistics can still be asymptotically gamma-distributed.
Even in finite sample situation, we can also use the gamma
type distributions to approximate the true distribution.Our
technical arguments are simple and can easily be understood.
en_US
dc.language.isoen_USen_US
dc.subject概似比函数zh_TW
dc.subjectlog-likelihood ratio statisticen_US
dc.title观察对数概似比函数在不平滑模型下之行为zh_TW
dc.titleBehavior of Log-likelihood Ratio Statistics in Non-smooth Modelsen_US
dc.typeThesisen_US
dc.contributor.department统计学研究所zh_TW
显示于类别:Thesis