Full metadata record
DC FieldValueLanguage
dc.contributor.author黃仲瑋en_US
dc.contributor.authorHuang Chung Weien_US
dc.contributor.author楊武en_US
dc.contributor.authorWuu Yangen_US
dc.date.accessioned2014-12-12T02:20:28Z-
dc.date.available2014-12-12T02:20:28Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870394023en_US
dc.identifier.urihttp://hdl.handle.net/11536/64162-
dc.description.abstract對於每天都有數以百件計的醫療新聞而言,能不能找到一個有效的方法,來蒐集管理這些資料呢?要能夠自動的讀取新聞,儲存在主機裡,分析各個新聞的文字內容,並決定這篇新聞所屬的醫學分類,讓忙碌的醫生護士或是醫藥行政人員,不需要再花費時間去搜尋醫學新聞,只要在自己的個人電腦上執行程式,就可以簡單的把整理好的新聞分類之後,呈現在自己的眼前。 在這篇論文中,我們研究了如何以改進的關鍵字比對方式代替困難的句意剖析,以及對全球資訊網上以超文件改寫語言(HTML)所創作文件的特殊斷句方法,以增進資訊蒐集的正確度。另外,以多字詞的方式記錄下網頁中每個句子的資訊,並且提供了字詞比對的特殊法則。以這些方法,和可更新或變動的分類資料來做比對,再將比對的結果,以網頁的方式呈現在使用者面前。zh_TW
dc.description.abstractThere is hundreds of medical news everyday. Can we find out an efficient method to collect these data? Moreover, the computer can feed news automatically, store it in the server, analyze the context of news, and then find out which assortment the specific news is. In other words, it is not necessary for doctors and nurses to spend time on searching medical news. They only have to run this program, and then the classified medical news will appear in front of them. In this paper, I introduce how improved search of keywords can replace the function of sentence analysis. Furthermore, I discuss the special methods of cutting sentences which can increase the accurateness of analysis. At last I will show you how to record each sentence's information by multi-words and special comparison rules. All of them are presented by HTML showcase.en_US
dc.language.isozh_TWen_US
dc.subject醫藥zh_TW
dc.subject新聞zh_TW
dc.subject自動zh_TW
dc.subject分類zh_TW
dc.subjectMedicalen_US
dc.subjectNewsen_US
dc.subjectAutomaticen_US
dc.subjectClassificationen_US
dc.title醫藥新聞的自動分類zh_TW
dc.titleAutomatic Classification of Medical Newsen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
Appears in Collections:Thesis