Full metadata record
DC FieldValueLanguage
dc.contributor.author許弘駿en_US
dc.contributor.authorHong-Chun Hsuen_US
dc.contributor.author徐力行en_US
dc.contributor.authorLih-Hsing Hsuen_US
dc.date.accessioned2014-12-12T02:20:28Z-
dc.date.available2014-12-12T02:20:28Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870394029en_US
dc.identifier.urihttp://hdl.handle.net/11536/64169-
dc.description.abstract一條路徑<v0,v1,…,vm>而且v0!=vm,包含一個圖形G上所有的點稱之為漢米爾頓路徑。一個圖形G被稱之為漢米爾頓連通圖,假如任兩點之間皆存在有漢米爾頓路徑。一個漢米爾頓連通圖是最佳的,假如在所有相同點數的漢米爾頓連通圖中它包含了最少的邊。在這篇論文中,我們會討論到一個最佳漢米爾頓圖的建構方法。zh_TW
dc.description.abstractA path <v0,v1,…,vm> with v0!=vm that includes all vertices of G is called a hamiltonian path. A graph G is called a hamiltonian connected if there exists a hamiltonian path joining any two different vertices in G. A hamiltonian connected graph is optimal if it contains the least number of edges among all the hamiltonian connected graphs with the same number of vertices. In this thesis, we study a construction scheme for optimal hamiltonian connected graphs.en_US
dc.language.isoen_USen_US
dc.subject漢米爾頓連通zh_TW
dc.subject漢米爾頓路徑zh_TW
dc.subjectHamiltonian Connecteden_US
dc.subjectHamiltonian Pathen_US
dc.title最佳漢米爾頓連通圖族zh_TW
dc.titleA Family of Optimal Hamiltonian Connected Graphsen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
Appears in Collections:Thesis