Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 許弘駿 | en_US |
dc.contributor.author | Hong-Chun Hsu | en_US |
dc.contributor.author | 徐力行 | en_US |
dc.contributor.author | Lih-Hsing Hsu | en_US |
dc.date.accessioned | 2014-12-12T02:20:28Z | - |
dc.date.available | 2014-12-12T02:20:28Z | - |
dc.date.issued | 1998 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT870394029 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/64169 | - |
dc.description.abstract | 一條路徑<v0,v1,…,vm>而且v0!=vm,包含一個圖形G上所有的點稱之為漢米爾頓路徑。一個圖形G被稱之為漢米爾頓連通圖,假如任兩點之間皆存在有漢米爾頓路徑。一個漢米爾頓連通圖是最佳的,假如在所有相同點數的漢米爾頓連通圖中它包含了最少的邊。在這篇論文中,我們會討論到一個最佳漢米爾頓圖的建構方法。 | zh_TW |
dc.description.abstract | A path <v0,v1,…,vm> with v0!=vm that includes all vertices of G is called a hamiltonian path. A graph G is called a hamiltonian connected if there exists a hamiltonian path joining any two different vertices in G. A hamiltonian connected graph is optimal if it contains the least number of edges among all the hamiltonian connected graphs with the same number of vertices. In this thesis, we study a construction scheme for optimal hamiltonian connected graphs. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 漢米爾頓連通 | zh_TW |
dc.subject | 漢米爾頓路徑 | zh_TW |
dc.subject | Hamiltonian Connected | en_US |
dc.subject | Hamiltonian Path | en_US |
dc.title | 最佳漢米爾頓連通圖族 | zh_TW |
dc.title | A Family of Optimal Hamiltonian Connected Graphs | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊科學與工程研究所 | zh_TW |
Appears in Collections: | Thesis |