Full metadata record
DC FieldValueLanguage
dc.contributor.author余菁蓉en_US
dc.contributor.authorYu Jing Rungen_US
dc.contributor.author黎漢林en_US
dc.contributor.authorLi Han Linen_US
dc.date.accessioned2014-12-12T02:20:37Z-
dc.date.available2014-12-12T02:20:37Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870396029en_US
dc.identifier.urihttp://hdl.handle.net/11536/64256-
dc.description.abstractTanaka and Ishibuchi 所提出的模糊迴歸分析法當資料變異非常大時,可能性模式所構成的區間很寬而必然性模式則無法算出;此外,他們的方法所求出的模式,其係數常不是模糊數。為處理資料變異大的問題,本文提一模糊逐段迴歸模式,並且也採用二次規劃來處理模糊數寬度為零的現象。本研究所提出模糊逐段迴歸模式有兩個優點:一、可同時算出模糊逐段迴歸模式和改變點位置;二、可透過自動區隔資料偵測到離群值。zh_TW
dc.description.abstractThe possibilistic regression analysis proposed by Tanaka and Ishibuchi, which is extremely sensitive to outliers, may not able to find feasible solution. Besides, when they use linear programming in possibilistic regression analysis, some coefficients are limited to be crisp because of the characteristic of linear programming. To overcome large variation problem, we propose fuzzy piecewise regression method. Our method can also treat the problem with crisp coefficients by utilizing quadratic programming approach. The proposed fuzzy piecewise regression method has two advantages: (a) It can detect the positions of change-points and can estimate the fuzzy piecewise regression model simultaneously; (b) It can deal with outliers by automatically segmenting the data.en_US
dc.language.isoen_USen_US
dc.subject模糊迴歸zh_TW
dc.subject逐段zh_TW
dc.subject二次規劃zh_TW
dc.subject可能性zh_TW
dc.subject必然性zh_TW
dc.subjectFuzzy Regressionen_US
dc.subjectPiecewiseen_US
dc.subjectQuadratic programmingen_US
dc.subjectPossibilityen_US
dc.subjectNecessityen_US
dc.title偵測改變點之模糊逐段迴歸模式zh_TW
dc.titleA Fuzzy Piecewise Regression Model with Change-point Detectionen_US
dc.typeThesisen_US
dc.contributor.department資訊管理研究所zh_TW
Appears in Collections:Thesis