Full metadata record
DC FieldValueLanguage
dc.contributor.author李供龍en_US
dc.contributor.authorGong-Long Leeen_US
dc.contributor.author陳信宏en_US
dc.contributor.authorSin-Horng Chenen_US
dc.date.accessioned2014-12-12T02:21:00Z-
dc.date.available2014-12-12T02:21:00Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870435043en_US
dc.identifier.urihttp://hdl.handle.net/11536/64503-
dc.description.abstract本論文的研究重點在於電話通道上的中文連續語音411音節辨認。以聲韻母模型為基礎,對不特定語者、大字彙國語連續411音節之強健式辨認。利用強健式訓練法,在訓練階段考慮通道與雜訊的效應,以獲致近乎乾淨的語音模型。並於辨認階段加入相對應之補償與LC相似度補償,經實際電話語音語料庫的測試,的確獲得良好的成果,得到TL語料庫的411音節辨認率為54.26%。另外,採用RRSBR方法以改善傳統SBR的缺點,不但使得辨認率上升,而且更能有效的節省辨認系統的運算量與辨認時間。得到MAT5語料庫的411音節辨認率為49.94%。zh_TW
dc.description.abstractIn this thesis, a robust training algorithm aiming at generating a set of bias-removed, noise-suppressed reference speech HMM models from a telephone-speech database collected in public telephone switching system is proposed. It incorporates a signal bias-compensation operation and a PMC noise-compensation operation into its iterative training process so as to make the resulting speech HMM models more suitable to the given robust speech recognition method using the same bias- and noise-compensation operations in its recognition process. Effectiveness of the proposed training algorithm was examined by simulation using a 227-speaker database provided by Chunghwa Telecommunication Laboratories (TL). Experimental results confirmed that it significantly outperformed the conventional segmental k-means training algorithm. An RNN-based robust signal bias removal (RRSBR) method is also proposed for improving the SBR method on both the recognition performance and the computational efficiency. The base-syllable recognition rates increased from 49.06% to 54.26% for the TL database and from 45.34% to 49.94% for a 649-speaker Mandarin-Across-Taiwan (MAT) database.en_US
dc.language.isozh_TWen_US
dc.subject強健式訓練法zh_TW
dc.subject相似度補償zh_TW
dc.subject強健式訊號偏移補償zh_TW
dc.subjectRobust Training Algorithmen_US
dc.subjectLikelihood Compensationen_US
dc.subjectRobust SBRen_US
dc.title電話環境之中文連續語音辨認zh_TW
dc.titleContinuous Mandarin Speech Recognition on Telephone Environmenten_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
Appears in Collections:Thesis