Full metadata record
DC FieldValueLanguage
dc.contributor.authorLou, C. -T.en_US
dc.contributor.authorLi, H. -D.en_US
dc.contributor.authorChung, J. -Y.en_US
dc.contributor.authorLin, D. -S.en_US
dc.contributor.authorChiang, T. -C.en_US
dc.date.accessioned2019-04-03T06:37:49Z-
dc.date.available2019-04-03T06:37:49Z-
dc.date.issued2009-11-01en_US
dc.identifier.issn1098-0121en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevB.80.195311en_US
dc.identifier.urihttp://hdl.handle.net/11536/6455-
dc.description.abstractLattice-matched ionic NaCl films were grown layer by layer on covalent Ge(100) using cycles of two half reactions (HRs) that involved the alternative adsorption of Cl and Na. The Ge 3d photoemission spectra obtained after full cycles of growth resembled that of clean Ge(100), but came to resemble that of the polar Cl-terminated surface after the subsequent half reaction of Cl adsorption. Concurrently, the Na and Cl core levels of the nanofilms shifted by similar to 1.7 eV between these two interface configurations. Our results demonstrate that reactions on the NaCl surface drive periodic electronic reconstructions at the NaCl-Ge interface.en_US
dc.language.isoen_USen_US
dc.subjectadsorptionen_US
dc.subjectband structureen_US
dc.subjectinterface structureen_US
dc.subjectnanostructured materialsen_US
dc.subjectsodium compoundsen_US
dc.subjectthin filmsen_US
dc.titleElectronic reconstruction at a buried ionic-covalent interface driven by surface reactionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevB.80.195311en_US
dc.identifier.journalPHYSICAL REVIEW Ben_US
dc.citation.volume80en_US
dc.citation.issue19en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000272311000074en_US
dc.citation.woscount3en_US
Appears in Collections:Articles


Files in This Item:

  1. c5b4871895b80f93c767f4eaad72b270.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.