完整後設資料紀錄
DC 欄位語言
dc.contributor.author林裕雄en_US
dc.contributor.authorYu-Hsiung Linen_US
dc.contributor.author陳大潘en_US
dc.contributor.authorDa-Pan Chenen_US
dc.date.accessioned2014-12-12T02:21:23Z-
dc.date.available2014-12-12T02:21:23Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870489022en_US
dc.identifier.urihttp://hdl.handle.net/11536/64697-
dc.description.abstract本論文主要是研究幾何模型曲面上的函數曲面,一般處理的方法有二。一是修正薛普法,二是三角基本法,本論文主要是使用三角基本法。 一般而言,幾何曲面與函數曲面的不同點在於切線向量的求得方式,幾何曲面的切線向量可以由複合曲線求得,進而建立幾何曲面,函數曲面因點群分佈較不規則,無法用複合曲線來求得切線向量,只能用近似球面的方式計算,進而建立近似函數曲面。 文中的曲線使用赫米特曲線,幾何曲面則以四角綴面組成,近似函數曲面則以三角綴面組成。zh_TW
dc.description.abstractThe aim of this thesis is researched for surface on surface. There are two methods which can construct them. One is a modified Shepard's method and the other is a triangular-based method. The triangular-based method for constructing surface on surface is used in this thesis. Generally, the difference between geometric surface and functional surface are decided tangent vectors. Tangent vectors of geometric surface are decided by composite curves and constructed a geometric surface. The points on the functional surface are more irregular so they can not use composite curve to decide tangent vectors. They only used approximate sphere to decide tangent vectors and constructed an approximate surface. In this thesis, the Hermite curves are used and geometric surface constructed by rectangular patch. An approximate functional surface is constructed by triangular patch.en_US
dc.language.isozh_TWen_US
dc.subject幾何曲面上的曲面zh_TW
dc.subject三角基本法zh_TW
dc.subject切線zh_TW
dc.subjectSurface on Surfaceen_US
dc.subjecttriangular-based methoden_US
dc.subjecttangenten_US
dc.title應用曲面上之曲面原理建構幾何模型之壓力分佈zh_TW
dc.titleSurface on Surface -- Pressure Distribution over Geometric Modelsen_US
dc.typeThesisen_US
dc.contributor.department機械工程學系zh_TW
顯示於類別:畢業論文