完整後設資料紀錄
DC 欄位語言
dc.contributor.author辛靜宜en_US
dc.contributor.authorChing-I Hsinen_US
dc.contributor.author吳培元en_US
dc.contributor.authorPeiYuan Wuen_US
dc.date.accessioned2014-12-12T02:21:35Z-
dc.date.available2014-12-12T02:21:35Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870507005en_US
dc.identifier.urihttp://hdl.handle.net/11536/64849-
dc.description.abstract本論文旨在探討在複希爾伯特空間上的算子,可相似於不可約算子之充份必要條件。 我們的成果如下: 在有限維的希爾伯特空間上,我們證明(1)可相似於不可約矩陣的 2x2 矩陣必不是純量矩陣;且反之亦然。(2)可相似於不可約矩陣的 nxn (n > 2) 矩陣 T 必不為 2 次矩陣,且對任意複數 a, T-aI 的秩不小 n/2;反之亦然。 在無窮維的希爾伯特空間上,針對加權(單側或雙側)移位算子或擬正規算子,我們有類似的結果。亦即,可相似於不可約算子的加權(單側或雙側)移位算子或擬正規算子 T 必不為2次算子,且對任意複數 a, T-aI 不為有限秩;反之亦然。此結果和有限維之矩陣,及正規算子(方資求, 蔣春瀾之研究結果)的情況吻合。 最後,我們針對C_0收縮算子加以探討。利用約當模型,得證可擬相似於不可約算子的C_0收縮算子T必不是2次算子,且對任意複數 a,T-aI 不為有限秩;反之亦然 。zh_TW
dc.description.abstractIn this thesis, we consider Hilbert space operators which are similar to irreducible ones. In the finite-dimentional case, we obtain the necessary and sufficient conditions for a complex square matrix $T$ to be similar to an irreducible one. We prove that (1) a $2\times 2$ matrix $T$ is similar to an irreducible matrix if and only if $T$ is not a scalar, and (2) an $n\times n$ ($n\geq 3$) matrix $T$ is similar to an irreducible matrix if and only if $T$ is not quadratic and rank $(T-\lambda I)\geq \dis\frac{n}{2}$ for any complex number $\lambda$. In the infinite-dimentional case, we prove an analogous result for weighted (unilateral or bilateral) shifts and quasinormal operators. Indeed, a weighted (unilateral or bilateral) shift or a quasinormal operator $T$ is similar to an irreducible operator if and only if $T$ is not quadratic and $T-\lambda I$ is not finite-rank for any complex number $\lambda$. It is obvious that the result is compatible with the ones in the finite-dimensional case and also with the work of C.K. Fong and C.L. Jiang on normal operators [8]. Finally, we consider $C_0$ contractions. Using the Jordan model of such operators, we prove that a $C_0$ contraction $T$ is quasisimilar to an irreducible operator if and only if $T$ is not quadratic and $T-\lambda I$ is not finite-rank for any complex number $\lambda$.en_US
dc.language.isoen_USen_US
dc.subject不可約算子zh_TW
dc.subject二次算子zh_TW
dc.subject冪算子zh_TW
dc.subject約當模型zh_TW
dc.subject擬正規算子zh_TW
dc.subject加權移位算子zh_TW
dc.subjectC_0收縮算子zh_TW
dc.subjectirreducible operatoren_US
dc.subjectquadratic operatoren_US
dc.subjectnilpotent operaroren_US
dc.subjectJordan formen_US
dc.subjectquasinormalen_US
dc.subjectweighted shiften_US
dc.subjectC_0 contractionen_US
dc.title相似於不可約的算子zh_TW
dc.titleOperators similar to irreducible onesen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文