Full metadata record
DC FieldValueLanguage
dc.contributor.author蔡蕙瑜en_US
dc.contributor.authorHui-Yu Tsaien_US
dc.contributor.author李榮耀en_US
dc.contributor.authorDr.Jong-Eao Leeen_US
dc.date.accessioned2014-12-12T02:21:35Z-
dc.date.available2014-12-12T02:21:35Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870507009en_US
dc.identifier.urihttp://hdl.handle.net/11536/64853-
dc.description.abstract  Lorenz Equations 是由三個參數所構成的三維常微分方程式,當參數改變時,方程式解之軌跡將有不同的情形產生,這其中也包括了混沌現象。在此篇論文中,我們藉著Mathematica來描繪方程式解之圖形,以便討論在不同參數值時,Lorenz系統的軌跡及其穩定性。zh_TW
dc.description.abstractLorenz system is a three-parameter family of three-dimensional ordinary differential equations. As we vary the parameters, we change the behavior of the flow determined by the equations. For some values, we see "chaos". To discuss the behavior at different parameters, and the stability of the Lorenz equations, we developed numerical codes to sketch the graphs of the Lorenz equations.en_US
dc.language.isozh_TWen_US
dc.subjectLorenz方程式zh_TW
dc.subject蝴蝶效應zh_TW
dc.subject線性化zh_TW
dc.subject穩定性zh_TW
dc.subject軌跡zh_TW
dc.subject混沌zh_TW
dc.subject平衡點zh_TW
dc.subjectLorenz Equationsen_US
dc.subjectMathematicaen_US
dc.subjectLinearizationen_US
dc.subjectStabilityen_US
dc.subjectEquilibriumen_US
dc.subjectBifurcationen_US
dc.subjectChaosen_US
dc.subjectDissipationen_US
dc.titleLorenz Equations 之研究zh_TW
dc.titleTopics in Lorenz Equationsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis