標題: Lorenz Equations 之研究
Topics in Lorenz Equations
作者: 蔡蕙瑜
Hui-Yu Tsai
李榮耀
Dr.Jong-Eao Lee
應用數學系所
關鍵字: Lorenz方程式;蝴蝶效應;線性化;穩定性;軌跡;混沌;平衡點;Lorenz Equations;Mathematica;Linearization;Stability;Equilibrium;Bifurcation;Chaos;Dissipation
公開日期: 1998
摘要:   Lorenz Equations 是由三個參數所構成的三維常微分方程式,當參數改變時,方程式解之軌跡將有不同的情形產生,這其中也包括了混沌現象。在此篇論文中,我們藉著Mathematica來描繪方程式解之圖形,以便討論在不同參數值時,Lorenz系統的軌跡及其穩定性。
Lorenz system is a three-parameter family of three-dimensional ordinary differential equations. As we vary the parameters, we change the behavior of the flow determined by the equations. For some values, we see "chaos". To discuss the behavior at different parameters, and the stability of the Lorenz equations, we developed numerical codes to sketch the graphs of the Lorenz equations.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT870507009
http://hdl.handle.net/11536/64853
Appears in Collections:Thesis