完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 黃曉慧 | en_US |
dc.contributor.author | Shiao-hui Huang | en_US |
dc.contributor.author | 黃光明 | en_US |
dc.contributor.author | F. K. Hwang | en_US |
dc.date.accessioned | 2014-12-12T02:21:36Z | - |
dc.date.available | 2014-12-12T02:21:36Z | - |
dc.date.issued | 1998 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT870507014 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/64859 | - |
dc.description.abstract | 一個組合上的群試問題是假設n個東西中有最多d個壞物,希望能使用盡可能少的測試數將此d壞物找出。在此篇論文中,我們將研究的問題是,在給定d的值下,決定n值為何?使得我們知道在無序群試中,如果待測東西小於等於n時,用一個一個去測試的方式是最佳的群試方法。我們令N(d)表此最大n值,當d給定下。文中我們將證明在某個條件限制下,N(d)=(d+1)^2 是充要條件,及證明在d = 1,2,3,4且無任何條件限制下, N(d)=(d+1)^2。 | zh_TW |
dc.description.abstract | The combinatorial group testing problem is, assuming the existence of up to $d$ defectives among $n$ items, to identify the defectives by as few tests as possible. In this thesis, we study the problem what values of $n$, given $d$, individual testing is optimal on nonadaptive group testing. Let $N(d)$ denote the largest $n$ for fixed $d$ that individual testing is optimal. We will show that $N(d)=(d+1)^{2}$ under a prevalent constraint in practical nonadaptive algorithms and prove that $N(d)=(d+1)^{2}$ for $d=1, 2, 3, 4$, without any constraint. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 個別測試 | zh_TW |
dc.subject | 群試 | zh_TW |
dc.subject | 無序 | zh_TW |
dc.subject | Individual testing | en_US |
dc.subject | Sequential | en_US |
dc.subject | Nonadaptive group testing | en_US |
dc.subject | d-disjunct | en_US |
dc.subject | Optimal | en_US |
dc.title | 個別測試是最優無序群試的條件 | zh_TW |
dc.title | When is Individual Testing Optimal for Nonadaptive Group Testing ? | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |