完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 洪丈力 | en_US |
dc.contributor.author | Jang-Lee Hong | en_US |
dc.contributor.author | 鄧清政 | en_US |
dc.contributor.author | Ching-Cheng Teng | en_US |
dc.date.accessioned | 2014-12-12T02:21:44Z | - |
dc.date.available | 2014-12-12T02:21:44Z | - |
dc.date.issued | 1998 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT870591002 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/64929 | - |
dc.description.abstract | 本論文採用串散射矩陣描述法,將四種不同類別的H-infinity控制問題之求解方法統一化。文中顯示,這些不同的求解方法均可轉換成簡單的網路架構,因此較為容易處理。第一和第二種解法分別是針對線性連續時間和線性離散時間的H-infinity控制問題。就這兩種方法而言,結果顯示眾所周知的Glover-Doyle法則可用( J,J’)-無損分解和串散射矩陣描述法來表示,並能得到不同控制器間之相似轉換特性。第三種解法是用來解非線性仿射的 H-infinity 控制問題,就Hamiltonian系統的特性,我們定義了非線性的共軛( J,J’)-無損和共軛( -J,-J’)損系統,然後,運用網路理論來解此問題。最後本文討論奇異非線性 H-infinity 控制問題的解法,我們首先對擴增受控體引入一個虛擬的輸入訊號,這一步驟將奇異非線性 H-infinity 控制問題轉換成近似標準化的非線性仿射 控制問題,因此,可採用如同解標準化 H-infinity 控制問題一樣的方式來處理這個問題。 | zh_TW |
dc.description.abstract | In this dissertation, a chain-scattering matrix description approach is utilized to unify the solving processes for four various classes of the H-infinity control problems. It is shown that these solving processes can be transformed into a simple lossless network which is easy to deal with in a network-theory context. The first and second solving processes are for the linear continuous- and discrete-time H-infinity control problems, respectively. For these processes, we show that the well-known Glover-Doyle algorithm can be formulated by using the (J,J')-lossless factorization and chain-scattering matrix description. Furthermore, the similarity transformation among H-infinity controllers are obtained. The nonlinear affine H-infinity control problem is considered as the third solving process. For this process, from the properties of Hamiltonian systems, we define the nonlinear conjugate (J,J')-lossless and conjugate (J,J')-expansive systems, and then this problem is formulated in terms of the chain-scattering matrix description and is solved by the classical network theory. Finally, the solving process for the singular nonlinear H-infinity control problem is examined. We first add an extra input signal into the augmented plant, which transforms this problem into a nearby nonsingular one, then can be solved as a standard nonlinear H-infinity control problem. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 線性控制問題 | zh_TW |
dc.subject | H-無限大 | zh_TW |
dc.subject | 串散射矩陣描述法 | zh_TW |
dc.subject | 非線性控制問題 | zh_TW |
dc.subject | 穩健控制 | zh_TW |
dc.subject | 最差情況設計 | zh_TW |
dc.subject | Linear Control Problem | en_US |
dc.subject | H-infinity | en_US |
dc.subject | Chain-Scattering Matrix Description Approach | en_US |
dc.subject | Nonlinear Control Problem | en_US |
dc.subject | Robust Control | en_US |
dc.subject | Worst Case Design | en_US |
dc.title | H-infinity 控制法則研究:串散射矩陣描述法 | zh_TW |
dc.title | On H-infinity Control Problems: A Chain-Scattering Matrix Description Approach | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |