完整後設資料紀錄
DC 欄位語言
dc.contributor.author許振榕en_US
dc.contributor.authorChen-Gjung Hsuen_US
dc.contributor.author鄧清政en_US
dc.contributor.authorChing-Cheng Tengen_US
dc.date.accessioned2014-12-12T02:21:44Z-
dc.date.available2014-12-12T02:21:44Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870591005en_US
dc.identifier.urihttp://hdl.handle.net/11536/64932-
dc.description.abstract在本論文中,我們提出一個根據增益邊際與相位邊際的規格,用模糊類神網路經來決定PID控制器的參數。過去PID控制器已經很廣泛地應用在穩定系統中,但對於開迴路的非穩定系統的PID控制器卻較少提到。在本文中,我們針對開迴路非穩定系統,先用模糊類神經網路去訓練增益邊際與相位邊際的規格與PID控制器參數間的關係之後,再利用已訓練過的網路去得到一組符合使用者所需求的增益邊際與相位邊際的規格之PID控制器參數,而不需靠任何的數值分析或作圖法來決定。此網路即使給的規格可能不合理,它依舊會給我們一組合理卻又離規格比較近的PID控制器參數。從模擬中可知模糊類神經網路可以有效率地達到所要求的規格。zh_TW
dc.description.abstractIn the thesis, we present a PID tuning method for unstable processes using Fuzzy Neural Network based on gain and phase margin (FNGP) specifications. PID tuning methods were widely used to control stable processes. However, PID control for unstable processes is less common. A fuzzy neural network approach is proposed to identify the relationship between the gain-phase margin specifications and the PID controller parameters. Then, the FNN is used to automatically tune the PID controller parameters for different gain and phase margin specifications so that neither numerical methods nor graphical methods need be used. Even though for some of the unreasonable specifications, the FNN still can find a suitable PID controllers' parameters close to the specifications. Simulation results show that the FNN can achieve the specified values efficiently.en_US
dc.language.isoen_USen_US
dc.subject模糊類神經網路zh_TW
dc.subject增益餘量zh_TW
dc.subject相位餘量zh_TW
dc.subject倒傳遞學習法則zh_TW
dc.subjectPID控制器zh_TW
dc.subjectFNNen_US
dc.subjectFNGPen_US
dc.subjectFuzzyen_US
dc.subjectNeuralen_US
dc.subjectGain marginen_US
dc.subjectPhase marginen_US
dc.subjectPID controlleren_US
dc.title基於增益餘量與相位餘量之非穩定系統PID控制器的調整方法:利用模糊類神經網路zh_TW
dc.titleTuning of PID Controllers for Unstable Processes Based on Gain and Phase Margin Specifications: A Fuzzy Neuralen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
顯示於類別:畢業論文