Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, Yueh-Chengen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorShieh, Shih-Fengen_US
dc.contributor.authorWang, Weichungen_US
dc.date.accessioned2014-12-08T15:08:24Z-
dc.date.available2014-12-08T15:08:24Z-
dc.date.issued2009-11-01en_US
dc.identifier.issn0021-9991en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jcp.2009.07.029en_US
dc.identifier.urihttp://hdl.handle.net/11536/6503-
dc.description.abstractWe aim at developing methods to track minimal energy solutions of time-independent m-component coupled discrete nonlinear Schrodinger (DNLS) equations. We first propose a method to find energy minimizers of the 1-component DNLS equation and use it as the initial point of the m-component DNLS equations in a continuation scheme. We then show that the change of local optimality occurs only at the bifurcation points. The fact leads to a minimal energy tracking method that guides the choice of bifurcation branch corresponding to the minimal energy solution curve. By combining all these techniques with a parameter-switching scheme, we successfully compute a non-radially symmetric energy minimizer that can not be computed by existing numerical schemes straightforwardly. (C) 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectCoupled nonlinear Schrodinger equationsen_US
dc.subjectContinuation methoden_US
dc.subjectGround statesen_US
dc.subjectMinimal energyen_US
dc.subjectNon-radially symmetric solutionsen_US
dc.titleA minimal energy tracking method for non-radially symmetric solutions of coupled nonlinear Schrodinger equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jcp.2009.07.029en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL PHYSICSen_US
dc.citation.volume228en_US
dc.citation.issue21en_US
dc.citation.spage7941en_US
dc.citation.epage7956en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000273389500005-
dc.citation.woscount6-
Appears in Collections:Articles


Files in This Item:

  1. 000273389500005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.