完整後設資料紀錄
DC 欄位語言
dc.contributor.author譚澤安en_US
dc.contributor.authorJ. Tanen_US
dc.contributor.author劉增豐en_US
dc.contributor.authorT. F. Liuen_US
dc.date.accessioned2014-12-12T02:22:38Z-
dc.date.available2014-12-12T02:22:38Z-
dc.date.issued1999en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT880159053en_US
dc.identifier.urihttp://hdl.handle.net/11536/65328-
dc.description.abstract在本論文中,我們利用掃描穿透式電子顯微鏡(STEM)和X-光能量散佈分析儀(EDS)研究觀察鎳含量對銅-鋁-鎳三元合金顯微結構變化的影響。根據我們的實驗觀察,得到以下幾項結果: [一] 在淬火狀態下,Cu-14.6wt.%Al-4.3wt.%Ni合金的淬火顯微結構為D03相的基地和極微細的析出物。根據實驗結果顯示,此微細析出物為L-J相,並非2H相。此外,由電子顯微鏡繞射分析顯示,L-J相會在D03基地中以兩個variants產生。此結果與其他學者在Cu-14.2Al-4.3Ni合金中所現的結果不同。 [二]在淬火狀態下,Cu-14.2wt.%Al-4.3wt.%Ni、Cu-14.2wt.%Al-6.0wt.%Ni及Cu-14.2wt.%Al-10.0wt.%Ni合金的淬火顯微結構皆為(D03+L-J)相。其中,L-J相的含量會隨著Ni含量的增加而增加。相反地,D03 domain size卻會隨著Ni含量的增加而減小。另外,在Cu-14.2wt.%Al-4.3wt.%Ni及Cu-14.2wt.%Al-6.0wt.%Ni合金中並無法觀察到a/4<111>反相晶界,而卻能在Cu-14.2wt.%Al-10.0wt.%Ni合金中清楚地觀察到a/4<111>反相晶界,此一實驗結果從未在銅-鋁-鎳三元合金中被其他學者發現過。 [三] 根據實驗結果,Cu-14.2wt.%Al-6.0wt.%Ni及Cu-14.2wt.%Al-10.0 wt.%Ni合金在300°C至750°C之間時效處理時產生的相變化反應分別為(D03+L-J+g2) ® (B2+L-J+g2) ® (B2+2H martensite+L-J+g2) ® (B2+disordered b+g2) ® (a+g2) ® (B2+g2) ® b及(D03+L-J+g2) ® (B2+L-J+g2) ® (g2+B2*+disordered b) ® b。在此值得一提的是較高的鎳含量在銅鋁鎳合金中使得B2 ® D03的相變化溫度降低。zh_TW
dc.description.abstractIn the present study, the effects of nickel content on the microstructural changes of Cu-Al-Ni ternary alloys have been investigated by means of scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectrometer (EDS). Based on our examinations, some results can be summarized as follows: [1] In the as-quenched condition, the microstructure of the Cu-14.6Al-4.3Ni alloy was D03 phase containing extremely fine precipitates. Transmission electron microscopy examinations indicated that the extremely fine precipitates should belong to the L-J phase, rather than 2H phase. In addition, electron diffraction analyses indicated that the L-J precipitate has two variants with the D03 matrix. These results are quite different from those reported by other workers in a Cu-14.2Al-4.3Ni alloy. [2] The microstructures of the Cu-14.2wt.%Al-4.3wt.%Ni, Cu-14.2wt.%Al-6.0wt.%Ni and Cu-14.2wt.%Al-10.0wt.%Ni alloys was D03 phase containing extremely fine particles. The extremely fine particles should belong to the L-J phase, rather than 2H phase. The amount of the L-J particles was decreased with increasing the nickel content. On the contrary, the size of the D03 domains was decreased with increasing the nickel content. No evidence of the a/4 <111> APBs could be detected in the both alloy A and alloy B. However, the a/4<111> APBs were clearly observed in the alloy C. This result has never been reported by other workers in the Cu-Al-Ni ternary alloys before. [3] Transmission electron microscopy examinations indicated that when the as-quenched Cu-14.2wt.%Al-6.0wt.%Ni alloy was aged at temperatures ranging from 300°C to 750°C, a (D03+L-J+g2) ® (B2+L-J+g2) ® (B2+2H martensite+L-J+g2) ® (B2+disordered b+g2) ® (a+g2) ® (B2+g2) ® b phase transition occurred; whereas, when the as-quenched Cu-14.2wt.%Al-10.0wt.%Ni alloy was aged at temperatures ranging from 300°C to 700°C, a (D03+L-J+g2) ® (B2+L-J+g2) ® (B2*+disordered b+g2) ® b phase transition occurred. The addition of higher nickel content to the Cu-Al-Ni alloy would lower the B2 ® D03 transition temperature.en_US
dc.language.isozh_TWen_US
dc.subject銅鋁鎳合金zh_TW
dc.subjectD03相zh_TW
dc.subjectL-J相zh_TW
dc.subject反相晶界zh_TW
dc.subject相域大小zh_TW
dc.subjectCu-Al-Ni alloysen_US
dc.subjectD03 phaseen_US
dc.subjectL-J phaseen_US
dc.subjectanti-phase boundariesen_US
dc.subjectdomain sizeen_US
dc.title銅鋁鎳合金之相變化zh_TW
dc.titlePhase transformations un the Cu-Al-Ni alloysen_US
dc.typeThesisen_US
dc.contributor.department材料科學與工程學系zh_TW
顯示於類別:畢業論文