Full metadata record
DC FieldValueLanguage
dc.contributor.author王則堯en_US
dc.contributor.author陳鄰安en_US
dc.date.accessioned2014-12-12T02:22:46Z-
dc.date.available2014-12-12T02:22:46Z-
dc.date.issued1999en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT880337015en_US
dc.identifier.urihttp://hdl.handle.net/11536/65382-
dc.description.abstract在線性回歸模式中,我們發展出三套Winsorized Means的理論: (1).Koenker and Bassett(1978) regression quantiles (2).Chen and Chiang(1996) symmetric quantile (3).Welsh(1987) residual quantile 在計算有效性的過程中,我們發現下面一些事實: (1).Winsorized Means不能改善Koenker and Bassett's and Welsh's Trimmed Means 的有效性. (2).Winsorized Means不但可以改善symmetric Trimmed Means, 而且它會更接近Cramer-Rao lower bound.zh_TW
dc.language.isozh_TWen_US
dc.subjectWinsorized meanzh_TW
dc.subjectTrimmed meanzh_TW
dc.subjectRegression quantilezh_TW
dc.subjectResidual quantilezh_TW
dc.subjectSymmetric quantilezh_TW
dc.titleTrimmed mean是否可以經由Winsorized mean改善它的有效性zh_TW
dc.titleCan the Asymptotic Efficiences of the Trimmed Means be Improved by Winsorized Meansen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis