完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 王則堯 | en_US |
dc.contributor.author | 陳鄰安 | en_US |
dc.date.accessioned | 2014-12-12T02:22:46Z | - |
dc.date.available | 2014-12-12T02:22:46Z | - |
dc.date.issued | 1999 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT880337015 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/65382 | - |
dc.description.abstract | 在線性回歸模式中,我們發展出三套Winsorized Means的理論: (1).Koenker and Bassett(1978) regression quantiles (2).Chen and Chiang(1996) symmetric quantile (3).Welsh(1987) residual quantile 在計算有效性的過程中,我們發現下面一些事實: (1).Winsorized Means不能改善Koenker and Bassett's and Welsh's Trimmed Means 的有效性. (2).Winsorized Means不但可以改善symmetric Trimmed Means, 而且它會更接近Cramer-Rao lower bound. | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | Winsorized mean | zh_TW |
dc.subject | Trimmed mean | zh_TW |
dc.subject | Regression quantile | zh_TW |
dc.subject | Residual quantile | zh_TW |
dc.subject | Symmetric quantile | zh_TW |
dc.title | Trimmed mean是否可以經由Winsorized mean改善它的有效性 | zh_TW |
dc.title | Can the Asymptotic Efficiences of the Trimmed Means be Improved by Winsorized Means | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 統計學研究所 | zh_TW |
顯示於類別: | 畢業論文 |