標題: | 對遞迴環繞圖的漢彌爾頓分解 Hamiltonian Decompositions of Recursive Circulant Graphs |
作者: | 陳玉專 Y-Chuang Chen 徐力行 Lih-Hsing Hsu 資訊科學與工程研究所 |
關鍵字: | 遞迴環繞圖;漢彌爾頓分解;recursive circulant graph;hamiltonian decomposition |
公開日期: | 1999 |
摘要: | 給定一個k-正則圖G,當k是偶數的時候,其邊集合可以被分解成k/2個漢彌爾頓迴圈,或當k是奇數的時候,其邊集合可以被分解成(k-1)/2個漢彌爾頓迴圈,則我們說圖G是可被漢彌爾頓分解的。在這篇論文中,我們證明了每一個遞迴環繞圖都是可以被漢彌爾頓分解的。 A k-regular graph G is hamiltonian decomposable if its edge-set can be partitioned into k/2 hamiltonian cycles when k is even or (k-1)/2 hamiltonian cycles and a perfect matching when k is odd. In this paper, we prove that every recursive circulant graph is hamiltonian decomposable. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT880394025 http://hdl.handle.net/11536/65519 |
顯示於類別: | 畢業論文 |