標題: 介電液FC-72對水平平板之池核沸騰熱傳增強分析
Analysis of Enhanced Nucleate Pool Boiling of FC-72 on Horizontal Flat Plates
作者: 黃鴻垣
Hong-Yuan Huang
盧定昶
Ding-Chong Lu
機械工程學系
關鍵字: 介電液;池核沸騰;FC-72;Nucleate Pool Boiling
公開日期: 1999
摘要: 介電液FC-72對水平平板之池核沸騰熱傳增強分析 學生:黃鴻垣 指導教授:盧定昶 國立交通大學機械工程研究所 摘 要 本論文主要的目的是模擬微電子元件散熱的方法,利用各種不同表面的水平平板在介電液FC-72中作池核沸騰熱傳增強分析。所用的表面有光滑表面(smooth surface)、噴砂表面(sprayed surface)及晶圓表面(wafer surface)三種,光滑表面和噴砂表面的材質為銅,幾何形狀為 面積的平板、厚度有1mm和2mm兩種;而晶圓表面的厚度則為0.8mm,幾何形狀也是 面積的平板。以控制電壓與電流來控制加熱片功率,加熱範圍為0至16瓦,在一大氣壓下和飽和溫度56.6 情況下進行水平平板的池核沸騰試驗,以瞭解不同結構的熱傳增強表面對池核沸騰熱傳性質的影響,進而找出較佳的熱傳增強表面結構及影響池核沸騰熱傳的參數。由實驗結果顯示:噴砂表面的臨界熱通量最高,其次是光滑表面,最低是矽晶圓表面,厚度1mm與2mm的光滑表面與厚度0.8mm的矽晶圓表面,其臨界熱通量分別為 、 和 。以起始沸騰過熱度來看,矽晶圓表面的起始沸騰過熱度約為光滑表面的1.43倍、噴砂表面的4.55倍。熱傳係數最佳為噴砂表面,其次為光滑表面,而矽晶圓表面熱傳係數最低。在熱損失實驗中,最高熱損失為輸入功率的13~14%,所以對臨界熱通量而言,本實驗有高估的現象,對光滑表面的臨界熱通量而言,本實驗約高估了14~15%。
Analysis of Enhanced Nucleate Pool Boiling of FC-72 on Horizontal Flat Plates Student:Hong-Yuan Huang Advisor:Ding-Chong Lu Institute of Mechanical Engineering National Chaio Tung University ABSTRACT The purpose of this study is to analyze enhanced nucleate pool boiling of dielectric fluid FC-72 on horizontal flat plates. The three test samples are smooth surface, sprayed surface and wafer surface. The material of the smooth surface and the sprayed surface is copper, both with a square area of and two different thickness(1mm and 2mm),respectively. The wafer surface is made of silicon with the same square area(1cm square )but 0.8mm thickness. FC-72 working fluid was heated by a DC electric heater with controllable voltage and current input. The experiment of pool boiling was conducted in FC-72 saturation temperature of 56.6 and 1 atmosphere. The experimental data showed that the sprayed surface has the highest critical heat flux, the smooth surface the next and the wafer surface the lowest. The boiling incipient superheated temperature of the wafer surface is 1.43 times and 4.55 times of that of the smooth surface and the sprayed surface, respectively. The sprayed surface has the highest heat transfer coefficient, the smooth surface the next and the wafer surface the lowest. The heat loss estimation is about 13~14% of the total power input. For example, the critical heat flux of the smooth surface is overestimated about 14~15%.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT880489045
http://hdl.handle.net/11536/66081
Appears in Collections:Thesis