完整後設資料紀錄
DC 欄位語言
dc.contributor.author魏平洪en_US
dc.contributor.authorPing-hong Weien_US
dc.contributor.author翁志文en_US
dc.contributor.authorChin-wen Wengen_US
dc.date.accessioned2014-12-12T02:24:02Z-
dc.date.available2014-12-12T02:24:02Z-
dc.date.issued1999en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT880507017en_US
dc.identifier.urihttp://hdl.handle.net/11536/66171-
dc.description.abstract我們讓G表示一個沒有重邊且沒有迴路的無向圖。若x是G上的一個點,則Gx是把點x及連接x的所有邊都去掉。我們獲得來回演算法去計算G的最小秩m(G)如下:定理:假設y和x是圖G上的點且兩個相連,其中y只與x相連。則$m(G)=m(G_{y})+1$若且唯若 $m(G_{y}) \leq m(G_{x})+1$。zh_TW
dc.description.abstractLet $G$ be an undirected graph without loops or edges. For a vertex $x\in V(G)$, let $G_x$ denoted the subgraph induced on the vertex set $V(G)\in \{x\}$. We obtain the following back and Forth algorithm to compute the minimun rank $m(G)$: Theorem: Suppose $y$ is a vertex of $G$ with degree 1 and $x$ is the neighbor of $y$. Then $m(G)=m(G_y)+1$ iff $m(G_y)\leq m(G_x)+1$.en_US
dc.language.isoen_USen_US
dc.subject最小秩zh_TW
dc.subjectminimun ranken_US
dc.title圖的最小秩zh_TW
dc.titleMinimun Rank Matrices with Prescribed Graphen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文