完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 魏平洪 | en_US |
dc.contributor.author | Ping-hong Wei | en_US |
dc.contributor.author | 翁志文 | en_US |
dc.contributor.author | Chin-wen Weng | en_US |
dc.date.accessioned | 2014-12-12T02:24:02Z | - |
dc.date.available | 2014-12-12T02:24:02Z | - |
dc.date.issued | 1999 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT880507017 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/66171 | - |
dc.description.abstract | 我們讓G表示一個沒有重邊且沒有迴路的無向圖。若x是G上的一個點,則Gx是把點x及連接x的所有邊都去掉。我們獲得來回演算法去計算G的最小秩m(G)如下:定理:假設y和x是圖G上的點且兩個相連,其中y只與x相連。則$m(G)=m(G_{y})+1$若且唯若 $m(G_{y}) \leq m(G_{x})+1$。 | zh_TW |
dc.description.abstract | Let $G$ be an undirected graph without loops or edges. For a vertex $x\in V(G)$, let $G_x$ denoted the subgraph induced on the vertex set $V(G)\in \{x\}$. We obtain the following back and Forth algorithm to compute the minimun rank $m(G)$: Theorem: Suppose $y$ is a vertex of $G$ with degree 1 and $x$ is the neighbor of $y$. Then $m(G)=m(G_y)+1$ iff $m(G_y)\leq m(G_x)+1$. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 最小秩 | zh_TW |
dc.subject | minimun rank | en_US |
dc.title | 圖的最小秩 | zh_TW |
dc.title | Minimun Rank Matrices with Prescribed Graph | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |