标题: | 平行多变量分位数区域 Parallel Multivariate Quantile Region |
作者: | 胡继安 Chi-An Hu 陈邻安 Lin-An Chen 统计学研究所 |
关键字: | 多变量分位数区域;制程能力指标;平行区域;全距;分位数;修饰后平均数;multivariate quantile region;process capability index;parallel region;range;quantile;trimmed mean |
公开日期: | 2000 |
摘要: | 在单维度下,分位数区间有许多的应用。但在多维度的情形下,尽管多维度的分位数已被提出(Chaudhuri (1996)、Chen and Welsh (1999)),如此的多维度分位数并不能适当地定义出分位数区间。我们提出以平行四边形区域为多维度分位数区域,与区域为椭圆相较,讨论在常态分配、指数分配和卡方分配下的有效性。我们并以平行四边形区域发展一些应用,其中深入探讨多维度修饰后平均数的大样本性质以及其效率。 There are many applications of the quantile interval for statistical inference in univariate distribution. Under multivariate dimension, although the multivariate quantile has been proposed (Chaudhuri(1996)、Chen and Welsh(1999)), the use of their quantiles for constructing multivariate region is not satisfactory. We propose a multivariate quantile region in the form of a parallelogram. Comparing with ellipsoid, we discuss the validity of the multivariate quantile regions under normal, exponential, and chi-square distribution. We also develop some applications of this parallel region, and study the multivariate trimmed mean constructed based on this region advancedly for its large sample property and efficiency. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT890337011 http://hdl.handle.net/11536/66762 |
显示于类别: | Thesis |